Herbrand quotient

Herbrand quotient

In mathematics, the Herbrand quotient is a quotient of orders of cohomology groups of a cyclic group. It was invented by Jacques Herbrand.

Definition

If "G" is a finite cyclic group acting on a module "A", then the cohomology groups "H""n"("G","A") have period 2 for "n"≥1; in other words:"H""n"("G","A") = "H""n"+2("G","A").The Herbrand quotient "h"("G","A") is defined to be the quotient :"h"("G","A") = |"H""2"("G","A")|/|"H""1"("G","A")
of the order of the even and odd cohomology groups, if both are finite.

Properties

*The Herbrand quotient is multiplicative on short exact sequences. In other words, if:0 → "A" → "B" → "C" → 0is exact, then:"h"("G","B") = "h"("G","A")"h"("G","C")
*If "A" is finite then "h"("G","A") = 1
*If Z is the integers with "G" acting trivially, then "h"("G",Z) = |"G"
*If "A" is a finitely generated "G"-module, then the Herbrand quotient "h"("A") depends only on the complex "G"-module C⊗"A" (and so can be read off from the character of this complex representation of "G"). These properties mean that the Herbrand quotient is usually relatively easy to calculate, and is often much easier to calculate than the orders of either of the individual cohomology groups.

ee also

*Class formation

References

The chapter by Atiyah and Wall in "Algebraic Number Theory" by J. W. S. Cassels, A. Frohlich ISBN 0-12-163251-2


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Jacques Herbrand — (February 12, 1908 July 27, 1931) was a French mathematician who was born in Paris, France and died in La Bérarde, Isère, France. He worked in mathematical logic and class field theory. He introduced recursive functions. Herbrand s theorem refers …   Wikipedia

  • Jacques Herbrand — Pour les articles homonymes, voir Herbrand. Dernière photographie de Jacques Herbrand prise au cours de l excursion où il trouva la mort Jacques Herbrand, né à Paris le 12 février …   Wikipédia en Français

  • Class formation — In mathematics, a class formation is a structure used to organize the various Galois groups and modules that appear in class field theory. They were invented by Emil Artin and John Tate. Contents 1 Definitions 2 Examples of class formations 3 The …   Wikipedia

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

  • Tate cohomology group — In mathematics, Tate cohomology groups are a slightly modified form of the usual cohomology groups of a finite group that combine homology and cohomology groups into one sequence. They were invented by John Tate, and are used in class field… …   Wikipedia

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Liste des articles de mathematiques — Projet:Mathématiques/Liste des articles de mathématiques Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou probabilités et statistiques via l un des trois bandeaux suivants  …   Wikipédia en Français

  • LOGIQUE MATHÉMATIQUE — La logique au sens étroit du terme, c’est à dire la logique formelle par opposition à l’épistémologie ou à la théorie de la connaissance, se propose de donner une théorie de l’inférence formellement valide. Elle considère comme valide toute… …   Encyclopédie Universelle

  • Algorithm — Flow chart of an algorithm (Euclid s algorithm) for calculating the greatest common divisor (g.c.d.) of two numbers a and b in locations named A and B. The algorithm proceeds by successive subtractions in two loops: IF the test B ≤ A yields yes… …   Wikipedia

  • Bernoulli number — In mathematics, the Bernoulli numbers Bn are a sequence of rational numbers with deep connections to number theory. They are closely related to the values of the Riemann zeta function at negative integers. There are several conventions for… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”