Euler number

Euler number

:"For other uses, see Euler number (topology) and Eulerian number. Also see e (mathematical constant),Euler number (physics) and Euler–Mascheroni constant."

In mathematics, in the area of number theory, the Euler numbers are a sequence "En" of integers defined by the following Taylor series expansion:

:frac{1}{cosh t} = frac{2}{e^{t} + e^ {-t} } = sum_{n=0}^{infin} frac{E_n}{n!} cdot t^n!

where cosh "t" is the hyperbolic cosine. The Euler numbers appear as a special value of the Euler polynomials.

The odd-indexed Euler numbers are all zero. The even-indexed ones OEIS|id=A000364 have alternating signs. Some values are::"E"0 = 1 :"E"2 = −1:"E"4 = 5:"E"6 = −61:"E"8 = 1,385:"E"10 = −50,521:"E"12 = 2,702,765:"E"14 = −199,360,981:"E"16 = 19,391,512,145:"E"18 = −2,404,879,675,441

Some authors re-index the sequence in order to omit the odd-numbered Euler numbers with value zero, and/or change all signs to positive. This encyclopedia adheres to the convention adopted above.

The Euler numbers appear in the Taylor series expansions of the secant and hyperbolic secant functions. The latter is the function in the definition. They also occur in combinatorics; see alternating permutation.

Asymptotic approximation

The Euler numbers diverge quite rapidly for large indices asthey have the following lower bound

: |E_{2 n}| > 8 sqrt { frac{n}{pi} } left(frac{4 n}{ pi e} ight)^{2 n} .

Refining this relation gives an asymptotic approximation for the Euler numbers

: |E_{2 n}| sim 8 sqrt { frac{n}{pi} } left(frac{4 n}{ pi e} cdot frac{480 n^2 + 9}{480 n^2 -1} ight)^{2n}.

This formula (Peter Luschny, 2007) is based on the connection of the Eulernumbers with the Riemann zeta function. For example this approximation gives

: |E(1000)| approx 3.8875618412530706152569ldots imes 10^{2371}

which is off only by four units in the least significant digit displayed.

Inequalities

The following two inequalities (Peter Luschny, 2007) hold for "n" > 4and the arithmetic mean of the two bounds is an
approximation of order "n"−3 to the absolute valueof the Euler numbers "E"2"n".

: 4 sqrt{e}left(frac{4 n}{pi e} ight)^{2n+1/2}left [ 1+frac{1}{24n} ight] < leftvert E_{2n} ightvert <4 sqrt{e}left(frac{4 n}{pi e} ight)^{2n+1/2}left [ 1+frac{1}{24n}left(1+frac{1}{24n} ight) ight]

Deleting the squared brackets on both sides and replacingon the right hand side the factor 4 by 5 gives simpleinequalities valid for "n" > 0. These inequalities canbe compared to related inequalities for the Bernoulli numbers.

For example for "E"1000 &times;10-2371 = 3.88756184125..., the low bound gives 3.88756182..., the high bound gives 3.88756185... and the mean value gives 3.88756184126... .

Integral representation and continuation.

The integral

: e(s) = 2e^{s i pi/2}int_{0}^{infty} frac{t^{s+1{e^{tpi/2}+e^{-tpi/2} } frac{dt}{t}

has as special values E2n = e(2n) for n 0. The integral might be considered as a continuation of the Euler numbers tothe complex plane and this was indeed suggested by Peter Luschny in 2004.

For example e(3) = -192(4)-4 and e(5) = 15360(6)-6.Here (n) denotes the Dirichlet beta function and the imaginary unit.


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Euler number — Eulerio skaičius statusas T sritis Energetika apibrėžtis Skaičius, apibūdinantis nagrinėjamojo srauto ruožo energijos nuostolių ir srauto kinetinės energijos santykį. atitikmenys: angl. Euler number vok. Eulerzahl, f rus. число Эйлера, n pranc.… …   Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

  • Euler number (physics) — The Euler number is a dimensionless number used in fluid flow calculations. It expresses the relationship between a local pressure drop e.g. over a restriction and the kinetic energy per volume, and is used to characterize losses in the flow.It… …   Wikipedia

  • Euler number — Смотри число Эйлера (Eu) …   Энциклопедический словарь по металлургии

  • Euler–Mascheroni constant — Euler s constant redirects here. For the base of the natural logarithm, e ≈ 2.718..., see e (mathematical constant). The area of the blue region is equal to the Euler–Mascheroni constant. List of numbers – Irrational and suspected irrational… …   Wikipedia

  • Euler's factorization method — is a method of factorization based upon representing a positive integer N as the sum of two squares in two different ways :N = a^2+ b^2 = c^2+ d^2 (1)Although the algebraic factorization of binomial numbers cannot factor sums of two squares… …   Wikipedia

  • Euler-Dreieck — Euler Zahlen als Koeffizienten von Euler Polynomen Die nach Leonhard Euler benannte Euler Zahl An,k in der Kombinatorik, auch geschrieben als E(n,k) oder , gibt die Anzahl der Permutationen (Anordnungen) von 1, …, n an, in denen genau k Elemente… …   Deutsch Wikipedia

  • Euler's equation of degree four — is a mathematical problem proposed by Leonhard Euler in 1772. [ [http://www.upi.com/NewsTrack/Science/2008/03/19/eulers equation of degree four solved/8804/ Euler s equation of degree four solved UPI.com ] ] The problem, which deals with number… …   Wikipedia

  • Euler's rule — Euler s rule, named after Leonhard Euler, is a generalization of Thâbit ibn Kurrah rule for finding amicable numbers. If a = 2 m ×(2 n − m + 1) − 1, b = 2 n ×(2 n − m + 1) − 1, and c = 2 n + m ×(2 n − m + 1)2 − 1 are all prime, for integers 0 < m …   Wikipedia

  • Euler (software) — Euler (nowadays Euler Mathematical Toolbox or EuMathT for short) is a free and open source numerical software package. It contains a matrix language, a graphical notebook style interface, and a plot window. It can handle real, complex and… …   Wikipedia

  • Euler's Day Off (game) — Euler s Day Off is a letter rearrangement word game.Objective of the gameThe object of the game is to arrange twenty five randomly selected letters in a five by five grid to form as many vertical and horizontal words as possible.coringPlayers… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”