Hurwitz polynomial

Hurwitz polynomial

In mathematics, a Hurwitz polynomial, named after Adolf Hurwitz, is a polynomial whose coefficients are positive real numbers and whose zeros are located in the left half-plane of the complex plane, that is, the real part of every zero is negative. One sometimes uses the term Hurwitz polynomial simply as a (real or complex) polynomial with all zeros in the left-half plane (i.e., a Hurwitz stable polynomial).

Examples

A simple example of a Hurwitz polynomial is the following:

:x^2 + 2x + 1.

The only real solution is −1, as it factors to:

:(x+1)^2.

Properties

For a polynomial to be Hurwitz, it is necessary but not sufficient that all of its coefficients be positive. For all of a polynomial's roots to lie in the left half-plane, it is necessary and sufficient that the polynomial in question pass the Routh-Hurwitz stability criterion.A given polynomial can be tested to be Hurwitz or not by using the continued fraction expansion technique.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Hurwitz — is a surname and may refer to:*Aaron Hurwitz, musician, see Live on Breeze Hill *Adolf Hurwitz (1859 1919), German mathematician **Hurwitz polynomial **Hurwitz matrix **Hurwitz quaternion **Hurwitz s automorphisms theorem **Hurwitz zeta function… …   Wikipedia

  • Hurwitz zeta function — In mathematics, the Hurwitz zeta function, named after Adolf Hurwitz, is one of the many zeta functions. It is formally defined for complex arguments s with Re( s )>1 and q with Re( q )>0 by:zeta(s,q) = sum {n=0}^infty frac{1}{(q+n)^{sThis series …   Wikipedia

  • Stable polynomial — A polynomial is said to be stable if either: * all its roots lie in the open left half plane, or * all its roots lie in the open unit disk.The first condition defines Hurwitz (or continuous time) stability and the second one Schur (or discrete… …   Wikipedia

  • Adolf Hurwitz — Infobox Scientist name = Adolf Hurwitz |300px caption = birth date = birth date|1859|3|26|df=y birth place = Hildesheim, Kingdom of Hannover (now Germany) death date = death date and age|1919|11|18|1859|3|26|df=y death place = Zürich, Switzerland …   Wikipedia

  • List of polynomial topics — This is a list of polynomial topics, by Wikipedia page. See also trigonometric polynomial, list of algebraic geometry topics.Basics*Polynomial *Coefficient *Monomial *Polynomial long division *Polynomial factorization *Rational function *Partial… …   Wikipedia

  • Routh-Hurwitz stability criterion — The Routh Hurwitz stability criterion is a necessary (and frequently sufficient) method to establish the stability of a single input, single output (SISO), linear time invariant (LTI) control system. More generally, given a polynomial, some… …   Wikipedia

  • Routh–Hurwitz theorem — In mathematics, Routh–Hurwitz theorem gives a test to determine whether a given polynomial is Hurwitz stable. It was proved in 1895 and named after Edward John Routh and Adolf Hurwitz.NotationsLet f(z) be a polynomial (with complex coefficients)… …   Wikipedia

  • Polynôme de Hurwitz — Un polynôme de Hurwitz, ainsi nommé en l honneur du mathématicien allemand Adolf Hurwitz, est un polynôme d’une variable à coefficients réels dont les racines sont toutes à partie réelle strictement négative. En particulier, de tels polynômes… …   Wikipédia en Français

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

  • Stability theory — In mathematics, stability theory deals with the stability of solutions (or sets of solutions) for differential equations and dynamical systems. Definition Let (R, X, Φ) be a real dynamical system with R the real numbers, X a locally compact… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”