Inverse iteration

Inverse iteration

In numerical analysis, inverse iteration is an iterative eigenvalue algorithm. Based on the power method, this method improves on its performance. Whereas the "power method" always converges to the largest eigenvalue, "inverse iteration" also enables the choice of which eigenvalue to converge to.

The basic idea of power iteration is choosing an initial vector "b" (either an eigenvector approximation or a random vector) and iteratively calculating Ab, A^{2}b, A^{3}b,.... Except for a set of zero measure, for any initial vector, the result will converge to an eigenvector corresponding to the dominant eigenvalue. In practice, the vector should be normalized after every iteration.

Unfortunately, power iteration can only find the eigenvector corresponding to the dominant eigenvalue. We could modify the algorithm so that instead we calculate A^{-1}b, A^{-2}b, A^{-3}b,.... This algorithm would find the eigenvector corresponding to the greatest reciprocal eigenvalue, max{ lambda^{-1} }, according to the inverse eigenvalues theorem. This is still not enough flexibility to find all the eigenvalues/eigenvectors.

However, imagine we have an approximation "μ" to the eigenvalue we are interested in. If "μ" is closer to lambda_{k} than any other eigenvalue of "A", then lambda_{k} - mu is the smallest eigenvalue of the matrix (A - mu I). By calculating (A - mu I)^{-1}b,(A - mu I)^{-2}b,(A - mu I)^{-3}b,..., we can find the eigenvector corresponding to this eigenvalue. Once we have a suitable eigenvector approximation, we can use the Rayleigh quotient to find the eigenvalue.

The inverse iteration algorithm converges fairly quickly. We can, however, achieve even faster convergence by using a better eigenvalue approximation each time. This is the idea behind Rayleigh quotient iteration.

The inverse iteration algorithm requires solving a linear system at each step. This would appear to require O(n^{3}) operations. However, this can be reduced to O(n^{2}) if we first reduce "A" to Hessenberg form. This is usually done in practice.

See also

*Power iteration
*Rayleigh quotient iteration


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Inverse Iteration — Die inverse Iteration ist ein numerisches Verfahren zur Berechnung von Eigenwerten und Eigenvektoren von Matrizen. Sie ist eine Variante der von Mises Iteration, mit deren Hilfe allerdings beliebige Eigenwerte berechnet werden können. Das… …   Deutsch Wikipedia

  • Power iteration — In mathematics, the power iteration is an eigenvalue algorithm: given a matrix A , the algorithm will produce a number lambda; (the eigenvalue) and a nonzero vector v (the eigenvector), such that Av = lambda; v .The power iteration is a very… …   Wikipedia

  • Rayleigh quotient iteration — is an eigenvalue algorithm which extends the idea of the inverse iteration by using the Rayleigh quotient to obtain increasingly accurate eigenvalue estimates.Rayleigh quotient iteration is an iterative method, that is, it must be repeated until… …   Wikipedia

  • Wielandt-Iteration — Die inverse Iteration ist ein numerisches Verfahren zur Berechnung von Eigenwerten von Matrizen. Sie ist eine Variante der von Mises Iteration, mit deren Hilfe allerdings beliebige Eigenwerte berechnet werden können. Das Verfahren wurde 1944 von… …   Deutsch Wikipedia

  • Fixed point iteration — In numerical analysis, fixed point iteration is a method of computing fixed points of iterated functions.More specifically, given a function f defined on the real numbers with real values and given a point x 0 in the domain of f, the fixed point… …   Wikipedia

  • List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra …   Wikipedia

  • QR-Algorithmus — Der QR Algorithmus ist ein numerisches Verfahren zur Berechnung aller Eigenwerte und eventuell der Eigenvektoren einer quadratischen Matrix. Das auch QR Verfahren oder QR Iteration genannte Verfahren basiert auf der QR Zerlegung und wurde im… …   Deutsch Wikipedia

  • List of mathematics articles (I) — NOTOC Ia IA automorphism ICER Icosagon Icosahedral 120 cell Icosahedral prism Icosahedral symmetry Icosahedron Icosian Calculus Icosian game Icosidodecadodecahedron Icosidodecahedron Icositetrachoric honeycomb Icositruncated dodecadodecahedron… …   Wikipedia

  • Julia set — In complex dynamics, the Julia set J(f), [Note that in other areas of mathematics the notation J(f), can also represent the Jacobian matrix of a real valued mapping f, between smooth manifolds.] of a holomorphic function f, informally consists of …   Wikipedia

  • Numerische Verfahren — Die Liste numerischer Verfahren führt Verfahren der numerischen Mathematik nach Anwendungsgebieten auf. Inhaltsverzeichnis 1 Lineare Gleichungssysteme 2 Nichtlineare Gleichungssysteme 3 Numerische Integration 4 Approximation und Interpolation …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”