- Medial
-
- This article is about medial in mathematics. For other uses, see medial (disambiguation).
Contents
Medial magmas
In abstract algebra, a medial magma (or medial groupoid) is a set with a binary operation which satisfies the identity
- , or more simply,
using the convention that juxtaposition has higher precedence. This identity has been variously called medial, abelian, alternation, transposition, interchange, bi-commutative, bisymmetric, surcommutative, entropic, etc.[1]
Any commutative semigroup is a medial magma, and a medial magma has an identity element if and only if it is a commutative monoid. Another class of semigroups forming medial magmas are the normal bands.[2] Medial magmas need not be associative: for any nontrivial abelian group and integers m ≠ n, replacing the group operation x + y with the binary operation yields a medial magma which in general is neither associative nor commutative.
A magma M is medial if and only if its binary operation is a homomorphism from the Cartesian square M x M to M. This can easily be expressed in terms of a commutative diagram, and thus leads to the notion of a medial magma object in a category with a cartesian product. (See the discussion in auto magma object.)
If f and g are endomorphisms of a medial magma, then the mapping f.g defined by pointwise multiplication
is itself an endomorphism.
Bruck-Toyoda theorem
The Bruck-Toyoda theorem provides the following characterization of medial quasigroups. Given an abelian group A and two commuting automorphisms φ and ψ of A, define an operation ∗ on A by
- x ∗ y = φ(x) + ψ(y) + c
where c some fixed element of A. It is not hard to prove that A forms a medial quasigroup under this operation. The Bruck-Toyoda theorem states that every medial quasigroup is of this form, i.e. is isomorphic to a quasigroup defined from an abelian group in this way.[3] In particular, every medial quasigroup is isotopic to an abelian group.
Generalizations
The term medial or (more commonly) entropic is also used for a generalization to multiple operations. An algebraic structure is an entropic algebra[4] if every two operations satisfy a generalization of the medial identity. Let f and g be operations of arity m and n, respectively. Then f and g are required to satisfy
See also
- Medial category
References
- ^ Historical comments J.Jezek and T.Kepka: Medial groupoids Rozpravy CSAV, Rada mat. a prir. ved 93/2 (1983), 93 pp
- ^ Yamada, Miyuki (1971), "Note on exclusive semigroups", Semigroup Forum 3 (1): 160–167, doi:10.1007/BF02572956.
- ^ Kuzʹmin, E. N. and Shestakov, I. P. (1995). "Non-associative structures". Algebra VI. Encyclopaedia of Mathematical Sciences. 6. Berlin, New York: Springer-Verlag. pp. 197–280. ISBN 978-3540546993.
- ^ [1]
Categories:- Nonassociative algebra
Wikimedia Foundation. 2010.