Medial

Medial
This article is about medial in mathematics. For other uses, see medial (disambiguation).

Contents

Medial magmas

In abstract algebra, a medial magma (or medial groupoid) is a set with a binary operation which satisfies the identity

(x \cdot y) \cdot (u \cdot v) = (x \cdot u) \cdot (y \cdot v), or more simply, xy\cdot uv = xu\cdot yv

using the convention that juxtaposition has higher precedence. This identity has been variously called medial, abelian, alternation, transposition, interchange, bi-commutative, bisymmetric, surcommutative, entropic, etc.[1]

Any commutative semigroup is a medial magma, and a medial magma has an identity element if and only if it is a commutative monoid. Another class of semigroups forming medial magmas are the normal bands.[2] Medial magmas need not be associative: for any nontrivial abelian group and integers mn, replacing the group operation x + y with the binary operation x \cdot y = mx+ny yields a medial magma which in general is neither associative nor commutative.

A magma M is medial if and only if its binary operation is a homomorphism from the Cartesian square M x M to M. This can easily be expressed in terms of a commutative diagram, and thus leads to the notion of a medial magma object in a category with a cartesian product. (See the discussion in auto magma object.)

If f and g are endomorphisms of a medial magma, then the mapping f.g defined by pointwise multiplication

(f\cdot g)(x) = f(x)\cdot g(x)

is itself an endomorphism.

Bruck-Toyoda theorem

The Bruck-Toyoda theorem provides the following characterization of medial quasigroups. Given an abelian group A and two commuting automorphisms φ and ψ of A, define an operation ∗ on A by

xy  =  φ(x) + ψ(y) + c

where c some fixed element of A. It is not hard to prove that A forms a medial quasigroup under this operation. The Bruck-Toyoda theorem states that every medial quasigroup is of this form, i.e. is isomorphic to a quasigroup defined from an abelian group in this way.[3] In particular, every medial quasigroup is isotopic to an abelian group.

Generalizations

The term medial or (more commonly) entropic is also used for a generalization to multiple operations. An algebraic structure is an entropic algebra[4] if every two operations satisfy a generalization of the medial identity. Let f and g be operations of arity m and n, respectively. Then f and g are required to satisfy

 f( g(x_{11}, \ldots, x_{1n}), \ldots, g(x_{m1}, \ldots, g_{mn}) ) = g( f(x_{11}, \ldots, x_{m1}), \ldots, f(x_{1n}, \ldots, f_{mn}) ).

See also

  • Medial category

References

  1. ^ Historical comments J.Jezek and T.Kepka: Medial groupoids Rozpravy CSAV, Rada mat. a prir. ved 93/2 (1983), 93 pp
  2. ^ Yamada, Miyuki (1971), "Note on exclusive semigroups", Semigroup Forum 3 (1): 160–167, doi:10.1007/BF02572956 .
  3. ^ Kuzʹmin, E. N. and Shestakov, I. P. (1995). "Non-associative structures". Algebra VI. Encyclopaedia of Mathematical Sciences. 6. Berlin, New York: Springer-Verlag. pp. 197–280. ISBN 978-3540546993. 
  4. ^ [1]

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат
Synonyms:

Look at other dictionaries:

  • medial — MEDIÁL, Ă, mediali, e, adj. Median. ♦ spec. (Despre sunete, rar despre litere) Care se află în interiorul cuvântului. ♦ (Despre vocale) Care se articulează în partea de mijloc a cavităţii bucale; central. [pr.: di al] – Din fr. médial, lat.… …   Dicționar Român

  • médial — ● médial, médiale, médiaux adjectif (latin medialis, de medius, central) médiale nom féminin (latin medialis, de medius, central) Dans certains alphabets (en particulier l alphabet arabe), se dit de la forme d une lettre employée dans le cours… …   Encyclopédie Universelle

  • Medial — Saltar a navegación, búsqueda Medial en anatomía: dícese de la situación de una estructura, víscera, órgano, etc., con relación a otro, respecto del plano sagital, que es el plano que contiene a los ejes anteroposterior y vertical y que se sitúa… …   Wikipedia Español

  • Medial — Me di*al (m[=e] d[i^]*al), a. [L. medialis, fr. medius middle: cf. F. m[ e]dial. See {Middle}.] Of or pertaining to a mean or average; mean; as, medial alligation. [1913 Webster] …   The Collaborative International Dictionary of English

  • Medial — steht für: „zur Mitte hin gelegen” in der Medizin, siehe Anatomische Lage und Richtungsbezeichnungen „medienbezogen” in Kommunikation und Publizistik eine Verbvalenz in der Linguistik, siehe Diathese (Linguistik) eine Eigenschaft in der Algebra,… …   Deutsch Wikipedia

  • medial — adj. 2 g. 1. Situado no meio. • s. f. 2. Letra medial (de uma palavra) …   Dicionário da Língua Portuguesa

  • medial — [mē′dē əl] adj. [LL medialis < L medius, middle: see MID1] 1. of or in the middle; neither beginning nor ending; median 2. nearer the median plane or axis of a body or part 3. a) of an average or mean b) average; ordinary …   English World dictionary

  • Medial — Me di*al, n. (Phonetics) See 2d {Media}. [1913 Webster] …   The Collaborative International Dictionary of English

  • Medial — Medial, Medialfernrohr, s. Fernrohr, S. 440 …   Meyers Großes Konversations-Lexikon

  • Medial — Mediāl (lat.), die Mitte bildend, zum Medium (s.d.) gehörend …   Kleines Konversations-Lexikon

  • medial — 1. situado u orientado hacia la línea media del cuerpo. 2. perteneciente a la túnica media, la capa media de la pared de un vaso sanguíneo. Diccionario Mosby Medicina, Enfermería y Ciencias de la Salud, Ediciones Hancourt, S.A …   Diccionario médico

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”