Definable set

Definable set

In mathematical logic, a definable set is an n-ary relation on the domain of a structure whose elements are precisely those elements satisfying some formula in the language of that structure. A set can be defined with or without parameters, which are elements of the domain that can be referenced in the formula defining the relation.

Contents

Definition

Let \mathcal{L} be a first-order language, \mathcal{M} an \mathcal{L}-structure with domain M, X a fixed subset of \mathcal{M}, and m a natural number. Then:

  • A set A\subseteq M^m is definable in \mathcal{M} with parameters from X if and only if there exists a formula \varphi[x_1,\ldots,x_m,y_1,\ldots,y_n] and elements b_1,\ldots,b_n\in X such that for all a_1,\ldots,a_m\in M,
    (a_1,\ldots,a_m)\in A if and only if \mathcal{M}\models\varphi[a_1,\ldots,a_m,b_1,\ldots,b_n]
    The bracket notation here indicates the semantic evaluation of the free variables in the formula.
  • A set A is definable in \mathcal{M} without parameters if it is definable in \mathcal{M} with parameters from the empty set (that is, with no parameters in the defining formula).
  • A function is definable in \mathcal{M} (with parameters) if its graph is definable (with those parameters) in \mathcal{M}.
  • An element a is definable in \mathcal{M} (with parameters) if the singleton set {a} is definable in \mathcal{M} (with those parameters).

Examples

The natural numbers with only the order relation

Let \mathcal{N}=(\mathbb{N},<) be the structure consisting of the natural numbers with the usual ordering. Then every natural is definable in \mathcal{N} without parameters. The number 0 is defined by the formula \varphi(x) stating that there exist no elements less than x:

\varphi=\neg\exists y(y<x),

and a natural n > 0 is defined by the formula \varphi(x) stating there exist exactly n elements less than x:

\varphi=\exists x_0\cdots\exists x_{n-1}(x_0<x_1\land\cdots\land x_{n-1}<x\land\forall y(y<x\rightarrow(y\equiv x_0\lor\cdots\lor y\equiv x_{n-1})))

In contrast, one cannot define any specific integer without parameters in the structure \mathcal{Z}=(\mathbb{Z},<) consisting of the integers with the usual ordering (see the section on automorphisms below).

The natural numbers with their arithmetical operations

Let \mathcal{N}=(\mathbb{N},+, \cdot, <) be the first-order structure consisting of the natural numbers and their usual arithmetic operations and order relation. The sets definable in this structure are known as the arithmetical sets, and are classified in the arithmetical hierarchy. If the structure is considered in second-order logic instead of first-order logic, the definable sets of natural numbers in the resulting structure are classified in the analytical hierarchy. These hierarchies reveal many relationships between definability in this structure and computability theory, and are also of interest in descriptive set theory.

The field of real numbers

Let \mathcal{R}=(\mathbb{R},0,1,+,\cdot) be the structure consisting of the field of real numbers. Although the usual ordering relation is not directly included in the structure, there is a formula that defines the set of nonnegative reals, since these are the only reals that possess square roots:

\varphi=\exists y(y\cdot y\equiv x).

Thus any a\in\R is nonnegative if and only if \mathcal{R}\models\varphi[a]. In conjunction with a formula that defines the additive inverse of a real number in \mathcal{R}, one can use φ to define the usual ordering in \mathcal{R}: for a,b\in\R, set a\le b if and only if ba is nonnegative. The enlarged structure \mathcal{R}^{\le}=(\mathbb{R},0,1,+,\cdot,\le)s is called a definitional extension of the original structure. It has the same expressive power as the original structure, in the sense that a set is definable over the enlarged structure from a set of parameters if and only if it is definable over the original structure from that same set of parameters.

The theory of \mathcal{R}^{\le} has quantifier elimination. Thus the definable sets are Boolean combinations of solutions to polynomial equalities and inequalities; these are called semi-algebraic sets. Generalizing this property of the real line leads to the study of o-minimality.

Invariance under automorphisms

An important result about definable sets is that they are preserved under automorphisms.

Let \mathcal{M} be an \mathcal{L}-structure with domain M, X\subseteq M, and A\subseteq M^m definable in \mathcal{M} with parameters from X. Let \pi:M\to M be an automorphism of \mathcal{M} which is the identity on X. Then for all a_1,\ldots,a_m\in M,
(a_1,\ldots,a_m)\in A if and only if (\pi(a_1),\ldots,\pi(a_m))\in A

This result can sometimes be used to classify the definable subsets of a given structure. For example, in the case of \mathcal{Z}=(\mathbb{Z},<) above, any translation of \mathcal{Z} is an automorphism preserving the empty set of parameters, and thus it is impossible to define any particular integer in this structure without parameters in \mathcal{Z}. In fact, since any two integers are carried to each other by a translation and its inverse, the only sets of integers definable in \mathcal{Z} without parameters are the empty set and \mathbb{Z} itself.

Additional results

The Tarski–Vaught test is used to characterize the elementary substructures of a given structure.

References

  • Hinman, Peter. Fundamentals of Mathematical Logic, A. K. Peters, 2005.
  • Marker, David. Model Theory: An Introduction, Springer, 2002.
  • Rudin, Walter. Principles of Mathematical Analysis, 3rd. ed. McGraw-Hill, 1976.
  • Slaman, Theodore A. and W. Hugh Woodin. Mathematical Logic: The Berkeley Undergraduate Course. Spring 2006.

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Ordinal definable set — In mathematical set theory, a set S is said to be ordinal definable if, informally, it can be defined in terms of a finite number of ordinals by a first order formula. Ordinal definable sets were introduced by Gödel (1965). A drawback to this… …   Wikipedia

  • Definable — In mathematical logic, the word definable may refer to: A definable real number. A definable set. A definable integer sequence. A relation or function definable over a first order structure. A mathematical object or concept that is well defined.… …   Wikipedia

  • Definable real number — A real number a is first order definable in the language of set theory, without parameters, if there is a formula φ in the language of set theory, with one free variable, such that a is the unique real number such that φ(a) holds in the standard… …   Wikipedia

  • Set theory — This article is about the branch of mathematics. For musical set theory, see Set theory (music). A Venn diagram illustrating the intersection of two sets. Set theory is the branch of mathematics that studies sets, which are collections of objects …   Wikipedia

  • Arithmetical set — In mathematical logic, an arithmetical set (or arithmetic set) is a set of natural numbers that can be defined by a formula of first order Peano arithmetic. The arithmetical sets are classified by the arithmetical hierarchy.A function f:subseteq… …   Wikipedia

  • Von Neumann–Bernays–Gödel set theory — In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of the canonical axiomatic set theory ZFC. A statement in the language of ZFC is provable in NBG if and only …   Wikipedia

  • Zermelo set theory — Zermelo set theory, as set out in an important paper in 1908 by Ernst Zermelo, is the ancestor of modern set theory. It bears certain differences from its descendants, which are not always understood, and are frequently misquoted. This article… …   Wikipedia

  • Countable set — Countable redirects here. For the linguistic concept, see Count noun. Not to be confused with (recursively) enumerable sets. In mathematics, a countable set is a set with the same cardinality (number of elements) as some subset of the set of… …   Wikipedia

  • Morse–Kelley set theory — In the foundation of mathematics, Morse–Kelley set theory (MK) or Kelley–Morse set theory (KM) is a first order axiomatic set theory that is closely related to von Neumann–Bernays–Gödel set theory (NBG). While von Neumann–Bernays–Gödel set theory …   Wikipedia

  • Implementation of mathematics in set theory — This article examines the implementation of mathematical concepts in set theory. The implementation of a number of basic mathematical concepts is carried out in parallel in ZFC (the dominant set theory) and in NFU, the version of Quine s New… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”