- Sturm-Liouville theory
In
mathematics and its applications, a classical Sturm-Liouville equation, named afterJacques Charles François Sturm (1803-1855) andJoseph Liouville (1809-1882), is a real second-order lineardifferential equation of the formwhere "y" is a function of the free variable "x". Here the functions "p"("x")>0, "q"("x"), and "w"("x")>0 are specified at the outset, and in the simplest of cases are continuous on the finite closed interval ["a","b"] . In addition, the function "y" is typically required to satisfy some
boundary condition s at "a" and "b". The function "w"("x"), which is sometimes called "r"("x"), is called the "weight" or "density" function.The value of λ is not specified in the equation; finding the values of λ for which there exists a non-trivial solution of (1) satisfying the boundary conditions is part of the problem called the Sturm-Liouville problem (S-L).
Such values of λ when they exist are called the
eigenvalues of the boundary value problem defined by (1) and the prescribed set of boundary conditions. The corresponding solutions (for such a λ) are theeigenfunction s of this problem. Under normal assumptions on the coefficient functions "p"("x"), "q"("x"), and "w"("x") above, they induce a Hermitiandifferential operator in somefunction space defined by boundary conditions. The resulting theory of the existence and asymptotic behavior of the eigenvalues, the corresponding qualitative theory of the eigenfunctions and their completeness in a suitablefunction space became known as Sturm-Liouville theory. This theory is important in applied mathematics, where S-L problems occur very commonly, particularly when dealing with linearpartial differential equation s which are separable.Sturm-Liouville theory
Under the assumptions that the S-L problem is regular, that is, "p"("x")-1>0, "q"("x"), and "w"("x")>0 are real-valued integrable functions over the finite interval ["a","b"] ,with "separated boundary conditions" of the form
:where the main tenet of Sturm-Liouville theory states that:
* The eigenvalues λ1, λ2, λ3, ... of the regular Sturm-Liouville problem (1)-(2)-(3) are real and can be ordered such that
::;
* Corresponding to each eigenvalue λ"n" is a unique (up to a normalization constant) eigenfunction "y""n"("x") which has exactly "n"-1 zeros in ("a","b"). The eigenfunction "y""n"("x") is called the "n"-th "fundamental solution" satisfying the regular Sturm-Liouville problem (1)-(2)-(3).
* The normalized eigenfunctions form an
orthonormal basis :: :in theHilbert space [Lebesgue space|"L"2( ["a","b"] ,w(x)dx)] . Here δ"mn" is aKronecker delta .Note that, unless "p"("x") is continuously differentiable and "q"("x"), "w"("x") are continuous, the equation has to be understood in a weak sense.
Sturm-Liouville form
The differential equation (1) is said to be in Sturm-Liouville form or self-adjoint form. All second-order linear
ordinary differential equation s can be recast in the form on the left-hand side of (1) by multiplying both sides of the equation by an appropriateintegrating factor (although the same is not true of second-orderpartial differential equation s, or if "y" is a vector.)Examples
The
Bessel equation ::
can be written in Sturm-Liouville form as
:
The Legendre equation,
:
can easily be put into Sturm-Liouville form, since "D"(1 − "x"2) = −2"x", so, the Legendre equation is equivalent to
:
Less simple is such a differential equation as
:
Divide throughout by "x"3:
:
Multiplying throughout by an
integrating factor of:
gives
:
which can be easily put into Sturm-Liouville form since
:
so the differential equation is equivalent to
:
In general, given a differential equation
:
dividing by "P"("x"), multiplying through by the integrating factor
:
and then collecting gives the Sturm-Liouville form.
Sturm-Liouville equations as self-adjoint differential operators
The map
::
can be viewed as a
linear operator mapping a function "u" to another function "Lu". We may study this linear operator in the context offunctional analysis . In fact, equation (1) can be written as::
This is precisely the
eigenvalue problem; that is, we are trying to find the eigenvalues λ1, λ2, λ3, ... and the corresponding eigenvectors "u"1, "u"2, "u"3, ... of the "L" operator. The proper setting for this problem is theHilbert space [Lebesgue space|"L"2( ["a","b"] ,w(x)dx)] withscalar product::
In this space "L" is defined on sufficiently smooth functions which satisfy the above boundary conditions. Moreover, "L" gives rise to a
self-adjoint operator.This can be seen formally by usingintegration by parts twice, where the boundary terms vanish by virtue of the boundary conditions. It then follows that the eigenvalues of a Sturm-Liouville operator are real and that eigenfunctions of "L" corresponding to different eigenvalues are orthogonal. However, this operator is unbounded and henceexistence of an orthonormal basis of eigenfunctions is not evident. To overcome this problem one looks at theresolvent ::
where "z" is chosen to be some real number which is not an eigenvalue. Then, computing the resolvent amounts to solving the inhomogeneous equation, which can be done using the
variation of parameters formula. This shows that the resolvent is anintegral operator with a continuous symmetric kernel (theGreen's function of the problem). As a consequence of theArzelà–Ascoli theorem this integral operator is compact and existence of a sequence of eigenvalues α"n" which converge to 0 and eigenfunctions which form an orthonormal basis follows from the spectral theorem for compact operators. Finally, note that is equivalent to .If the interval is unbounded, or if the coefficients have singularities at the boundarypoints, one calles "L" singular. In this case the spectrum does no longer consist ofeigenvalues alone and can contain a continuous component. There is still an associatedeigenfunction expansion (similar to Fourier series versus Fourier transform). This isimportant in
quantum mechanics , since the one-dimensionalSchrödinger equation is a special case of a S-L equation.Example
We wish to find a function "u"("x") which solves the following Sturm-Liouville problem:
:
where the unknowns are "λ" and "u"("x"). As above, we must add boundary conditions, we take for example
:
Observe that if "k" is any integer, then the function
:
is a solution with eigenvalue λ = −"k"2. We know that the solutions of a S-L problem form an orthogonal basis, and we know from Fourier series that this set of sinusoidal functions is an orthogonal basis. Since orthogonal bases are always maximal (by definition) we conclude that the S-L problem in this case has no other eigenvectors.
Given the preceding, let us now solve the inhomogeneous problem
:
with the same boundary conditions. In this case, we must write "f"("x") = "x" in a Fourier series. The reader may check, either by integrating ∫exp("ikx")"x" d"x" or by consulting a table of Fourier transforms, that we thus obtain
:
This particular Fourier series is troublesome because of its poor convergence properties. It is not clear a priori whether the series converges pointwise. Because of Fourier analysis, since the Fourier coefficients are "square-summable", the Fourier series converges in "L"2 which is all we need for this particular theory to function. We mention for the interested reader that in this case we may rely on a result which says that Fourier's series converges at every point of differentiability, and at jump points (the function "x", considered as a periodic function, has a jump at π) converges to the average of the left and right limits (see
convergence of Fourier series ).Therefore, by using formula (4), we obtain that the solution is
:
In this case, we could have found the answer using antidifferentiation. This technique yields "u=(x3-π2x)/6", whose Fourier series agrees with the solution we found. The antidifferentiation technique is no longer useful in most cases when the differential equation is in many variables.
Application to normal modes
Suppose we are interested in the modes of vibration of a thin membrane, held in a rectangular frame, 0 < "x" < "L"1, 0 < "y" < "L"2. We know the equation of motion for the vertical membrane's displacement, "W"("x", "y", "t") is given by the
wave equation ::
The equation is separable (substituting "W" = "X"("x") × "Y"("y") × "T"("t")), and the normal mode solutions that have
harmonic time dependence and satisfy the boundary conditions "W" = 0 at "x" = 0, "L"1 and "y" = 0, "L"2 are given by:
where "m" and "n" are non-zero
integer s, "Amn" is an arbitrary constant and:
Since the eigenfunctions "Wmn" form a basis, an arbitrary initial displacement can be decomposed into a sum of these modes, which each vibrate at their individual frequencies . Infinite sums are also valid, as long as they converge.
ee also
*
Normal mode
*Self-adjoint References
* P. Hartman, "Ordinary Differential Equations", SIAM, Philadelphia, 2002 (2nd edition). ISBN 978-0-898715-10-1
* A. D. Polyanin and V. F. Zaitsev, "Handbook of Exact Solutions for Ordinary Differential Equations", Chapman & Hall/CRC Press, Boca Raton, 2003 (2nd edition). ISBN 1-58488-297-2
* G. Teschl, "Ordinary Differential Equations and Dynamical Systems", http://www.mat.univie.ac.at/~gerald/ftp/book-ode/ (Chapter 5)
* G. Teschl, "Mathematical Methods in Quantum Mechanics and Applications to Schrödinger Operators", http://www.mat.univie.ac.at/~gerald/ftp/book-schroe/ (see Chapter 9 for singular S-L operators and connections with quantum mechanics)
* A. Zettl, "Sturm-Liouville Theory", American Mathematical Society, 2005. ISBN 0-8218-3905-5.
Wikimedia Foundation. 2010.