Differentiation in Fréchet spaces

Differentiation in Fréchet spaces

In mathematics, in particular in functional analysis and nonlinear analysis, it is possible to define the derivative of a function between two Fréchet spaces. This notion of differentiation is significantly weaker than the derivative in a Banach space. Nevertheless, it is the weakest notion of differentiation for which many of the familiar theorems from calculus hold. In particular, the chain rule is true. With some additional constraints on the Fréchet spaces and functions involved, there is an analog of the inverse function theorem called the Nash–Moser inverse function theorem, having wide applications in nonlinear analysis and differential geometry.

Contents

Mathematical details

Formally, the definition of differentiation is identical to the Gâteaux derivative. Specifically, let X and Y be Fréchet spaces, UX be an open set, and F : UY be a function. The directional derivative of F in the direction vX is defined by


DF(u)v=\lim_{\tau\rightarrow 0}\frac{F(u+v \tau)-F(u)}{\tau}

if the limit exists. One says that F is continuously differentiable, or C1 if the limit exists for all h ∈ X and the mapping

DF:U x XY

is a continuous map.

Higher order derivatives are defined inductively via

D^{k+1}F(u)\{v_1,v_2,\dots,v_{k+1}\} = \lim_{\tau\rightarrow 0}\frac{D^kF(u+\tau v_{k+1})\{v_1,\dots,v_k\}-D^kF(u)\{v_1,\dots,v_k\}}{\tau}.

A function is said to be Ck if DF : U x X x Xx ... x XY is continuous. It is C, or smooth if it is Ck for every k.

Properties

Let X, Y, and Z be Fréchet spaces. Suppose that U is an open subset of X, V is an open subset of Y, and F : UV, G : VZ are a pair of C1 functions. Then the following properties hold:

  • (Fundamental theorem of calculus.)
If the line segment from a to b lies entirely within U, then
 F(b)-F(a) = \int_0^1 DF(a+(b-a)t)\cdot (b-a) dt.
  • (The chain rule.)
D(G o F)(u)x = DG(F(u))DF(u)x for all u ε U and x ε X.
  • (Linearity.)
DF(u)x is linear in x. More generally, if F is Ck, then DF(u){x1,...,xk} is multilinear in the x's.
  • (Taylor's theorem with remainder.)
Suppose that the line segment between u ε U and u+h lies entirely within u. If F is Ck then
F(u+h)=F(u)+DF(u)h+\frac{1}{2!}D^2F(u)\{h,h\}+\dots+\frac{1}{(k-1)!}D^{k-1}F(u)\{h,h,\dots,h\}+R_k
where the remainder term is given by
R_k(u,h)=\frac{1}{(k-1)!}\int_0^1(1-t)^{k-1}D^kF(u+th)\{h,h,\dots,h\}dt
  • (Commutativity of directional derivatives.) If F is Ck, then
D^kF(u)\{h_1,...,h_k\}=D^kF(u)\{h_{\sigma(1)},\dots,h_{\sigma(k)}\} for every permutation σ of {1,2,...,k}.

The proofs of many of these properties rely fundamentally on the fact that it is possible to define the Riemann integral of continuous curves in a Fréchet space.

Consequences in differential geometry

The existence of a chain rule allows for the definition of a manifold modeled on a Frèchet space: a Fréchet manifold. Furthermore, the linearity of the derivative implies that there is an analog of the tangent bundle for Fréchet manifolds.

Tame Fréchet spaces

Frequently the Fréchet spaces that arise in practical applications of the derivative enjoy an additional property: they are tame. Roughly speaking, a tame Fréchet space is one which is almost a Banach space. On tame spaces, it is possible to define a preferred class of mappings, known as tame maps. On the category of tame spaces under tame maps, the underlying topology is strong enough to support a fully fledged theory of differential topology. Within this context, many more techniques from calculus hold. In particular, there are versions of the inverse and implicit function theorems.

References

  1. Hamilton, R. S. (1982). "The inverse function theorem of Nash and Moser". Bull. AMS. 7 (7): 65–222. doi:10.1090/S0273-0979-1982-15004-2. MR656198. http://projecteuclid.org/euclid.bams/1183549049. 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Maurice René Fréchet — Born September 2, 1878(1878 0 …   Wikipedia

  • Fréchet derivative — In mathematics, the Fréchet derivative is a derivative defined on Banach spaces. Named after Maurice Fréchet, it is commonly used to formalize the concept of the functional derivative used widely in mathematical analysis, especially functional… …   Wikipedia

  • Gâteaux derivative — In mathematics, the Gâteaux differential is a generalisation of the concept of directional derivative in differential calculus. Named after René Gâteaux, a French mathematician who died young in World War I, it is defined for functions between… …   Wikipedia

  • List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

  • Derivative — This article is an overview of the term as used in calculus. For a less technical overview of the subject, see Differential calculus. For other uses, see Derivative (disambiguation) …   Wikipedia

  • Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… …   Wikipedia

  • Generalizations of the derivative — The derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, and geometry. Contents 1 Derivatives in analysis 1.1 Multivariable… …   Wikipedia

  • Derivative (generalizations) — Derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, and geometry. Derivatives in analysis In real, complex, and functional… …   Wikipedia

  • Matrix calculus — Topics in Calculus Fundamental theorem Limits of functions Continuity Mean value theorem Differential calculus  Derivative Change of variables Implicit differentiation Taylor s theorem Related rates …   Wikipedia

  • Chain rule — For other uses, see Chain rule (disambiguation). Topics in Calculus Fundamental theorem Limits of functions Continuity Mean value theorem Differential calculus  Derivative Change of variables Implicit differentiation …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”