- Hairy ball theorem
The hairy ball theorem of
algebraic topology states that there is no nonvanishing continuoustangent vector field on the sphere. If "f" is a continuous function that assigns a vector in R3 to every point "p" on a sphere such that "f"("p") is alwaystangent to the sphere at "p", then there is at least one "p" such that "f"("p") = 0.This is famously stated as "you can't comb a hairy ball flat without creating a
cowlick ", or sometimes, "you can't comb the hair on a billiard ball". It was first proved in 1912 by Brouwer, see [http://dz-srv1.sub.uni-goettingen.de/sub/digbib/loader?ht=VIEW&did=D28661] .In fact from a more advanced point of view it can be shown that the sum at the zeros of such a vector field of a certain 'index' must be 2, the
Euler characteristic of the 2-sphere; and that therefore there must be at least some zero. This is a consequence of thePoincaré–Hopf theorem . In the case of thetorus , the Euler characteristic is 0; and it "is" possible to 'comb a hairy donut flat'. In this regard, it follows that for anycompact regular 2-dimensionalmanifold with non-zero Euler characteristic, any continuous tangent vector field has at least one zero.Cyclone consequences
A curious meteorological application of this theorem involves considering the wind as a vector defined at every point continuously over the surface of a planet with an atmosphere. As an idealisation, take wind to be a two-dimensional vector: suppose that relative to the planetary diameter of the Earth, its vertical (i.e., non-tangential) motion is negligible.
One scenario, in which there is absolutely no wind (air movement), corresponds to a field of zero-vectors. This scenario is uninteresting from the point of view of this theorem, and physically unrealistic (there will always be wind). In the case where there is at least some wind, the Hairy Ball Theorem dictates that there must be at least one point on a planet at all times with no wind at all. This corresponds to the above statement that there will always be "p" such that "f"("p") = 0.
In a physical sense, this zero-wind point will be the eye of a cyclone or anticyclone. (Like the swirled hairs on the tennis ball, the wind will spiral around this zero-wind point - under our assumptions it cannot flow into or out of the point.) In brief, then, the Hairy Ball Theorem dictates that, given at least some wind on Earth, there must at all times be a
cyclone somewhere. Note that the eye can be arbitrarily large or small and the magnitude of the wind surrounding it is irrelevant.Application to computer graphics
A common problem in computer graphics is to generate a non-zero vector that is orthogonal to a given one. There is no continuous function that can do this. If the given vector is considered to be the radius vector of a sphere, then it follows that that is a corollary of the hairy ball theorem. To see this, note that finding a non-zero vector orthogonal to the given one is equivalent to finding a non-zero vector that is tangent to the surface of the sphere produced by the given vector. However, the hairy ball theorem says there exists no "continuous" function that can do this for every point on the sphere (ie. every given vector).
Lefschetz connection
There is a closely-related argument from
algebraic topology , using theLefschetz fixed point theorem . Since theBetti number s of a 2-sphere are 1, 0, 1, 0, 0, ... the "Lefschetz number " (total trace on homology) of theidentity mapping is 2. By integrating avector field we get (at least a small part of) aone-parameter group ofdiffeomorphism s on the sphere; and all of the mappings in it arehomotopic to the identity. Therefore they all have Lefschetz number 2, also. Hence they have fixed points (since the Lefschetz number is nonzero). Some more work would be needed to show that this implies there must actually be a zero of the vector field. It does suggest the correct statement of the more generalPoincaré-Hopf index theorem .Corollary
A consequence of the hairy ball theorem is that any continuous function that maps a sphere into itself has either a fixed point or a point that maps onto its own
antipodal point . This can be seen by transforming the function into a tangential vector field as follows.Let "s" be the function mapping the sphere to itself, and let "v" be the tangential vector function to be constructed. For each point "p", construct the
stereographic projection of "s"("p") with "p" as the point of tangency. Then "v"("p") is the displacement vector of this projected point relative to "p". According to the hairy ball theorem, there is a "p" such that "v"("p") = 0, so that "s"("p") = "p".This argument breaks down only if there exists a point "p" for which "s"("p") is the antipodal point of "p", since such a point is the only one that cannot be stereographically projected onto the tangent plane of "p".
Higher dimensions
The connection with the
Euler characteristic χ suggests the correct generalisation: the 2"n"-sphere has no non-vanishing vector field for "n" ≥ 1. The difference in even and odd dimension is that theBetti number s of the "m"-sphere are 0 except in dimensions 0 and "m". Therefore theiralternating sum χ is 2 for "m" even, and 0 for "m" odd.References
*Murray Eisenberg, Robert Guy, "A Proof of the Hairy Ball Theorem", The American Mathematical Monthly, Vol. 86, No. 7 (Aug. - Sep., 1979), pp. 571-574
ee also
*
Vector fields on spheres
*Tokamak
Wikimedia Foundation. 2010.