Koszul-Tate resolution

Koszul-Tate resolution

In mathematics, a Koszul-Tate resolution or Koszul-Tate complex is a projective resolution of "R"/"M" that is an "R"-algebra (where "R" is a commutative ring and "M" is an ideal). They were introduced by John Tate and have been used to calculate BRST cohomology. The differential of this complex is called the Koszul-Tate derivation or Koszul-Tate differential.

Construction

First suppose for simplicity that all rings contain the rational numbers "Q". Assume we have a graded supercommutative ring "X", so that

:"ab"=(-1)deg("a")deg ("b")"ba",

with a differential "d", with

:"d"("ab") = "d"("a")"b" +(-1)deg("a")"ad"("b")),

and "x" ∈ "X" is a homogeneous cycle ("dx"=0). Then we can form a new ring

:"Y"="X" [T]

of polynomials in a variable "T", where the differential is extended to "T" by

:"dT"="x".

(The polynomial ring is understood in the super sense, so if "T" has odd degree then "T"2=0.) The result of adding the element "T" is to kill off the element of the homology of "X" represented by "x", and "Y" is still a supercommutative ring with derivation.

A Koszul-Tate resolution of "R"/"M" can be constructed as follows. We start with the commutative ring "R" (graded so that all elements have degree 0). Then add new variables as above of degree 1 to kill off all elements of the ideal "M" in the homology. Then keep on adding more and more new variables (possible an infinite number) to kill off all homology of positive degree. We end up with a supercommutative graded ring with derivation "d" whose homology is just "R"/"M".

If we are not working over a field of characteristic 0, the construction above still works, but it is usually neater to use the following variation of it. Instead of using polynomial rings "X" ["T"] , one can use a "polynomial ring with divided powers" "X"〈"T"〉, which has a basis of elements

:"T"("i") for "i"≥0,

where:"T"("i")"T"("j") = (("i"+"j")!/"i"!"j"!)"T"("i"+"j").

Over a field of characteristic 0, :"T"("i") is just "T""i"/"i"!.

ee also

*Koszul complex
*Lie algebra cohomology

References

* J.L. Koszul, "Homologie et cohomologie des algèbres de Lie", "Bulletin de la Société Mathématique de France", 78, 1950, pp 65-127.
*J. Tate, "Homology of Noetherian rings and local rings", "Illinois Journal of Mathematics", 1, 1957, pp. 14-27.
*M. Henneaux and C. Teitelboim, "Quantization of Gauge Systems", Princeton University Press, 1992
*There is a jet bundle description of the Koszul-Tate complex by Verbovetsky here [http://arxiv.org/abs/math/0105207]


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Jean-Louis Koszul — Naissance 3 janvier 1921 Strasbourg (France) Nationalité  France Champs Mathématicien …   Wikipédia en Français

  • Jean-Louis Koszul — (born January 3, 1921 in Strasbourg, France) is a mathematician best known for studying geometry and discovering the Koszul complex. He was educated at the Lycée Fustel de Coulanges in Strasbourg before studying at the Faculty of Science in… …   Wikipedia

  • List of mathematics articles (K) — NOTOC K K approximation of k hitting set K ary tree K core K edge connected graph K equivalence K factor error K finite K function K homology K means algorithm K medoids K minimum spanning tree K Poincaré algebra K Poincaré group K set (geometry) …   Wikipedia

  • Séminaire Nicolas Bourbaki (1950–1959) — Continuation of the Séminaire Nicolas Bourbaki programme, for the 1950s. 1950/51 series *33 Armand Borel, Sous groupes compacts maximaux des groupes de Lie, d après Cartan, Iwasawa et Mostow (maximal compact subgroups) *34 Henri Cartan, Espaces… …   Wikipedia

  • List of important publications in mathematics — One of the oldest surviving fragments of Euclid s Elements, found at Oxyrhynchus and dated to circa AD 100. The diagram accompanies Book II, Proposition 5.[1] This is a list of important publications in mathematics, organized by field. Some… …   Wikipedia

  • Group cohomology — This article is about homology and cohomology of a group. For homology or cohomology groups of a space or other object, see Homology (mathematics). In abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well… …   Wikipedia

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Crystalline cohomology — In mathematics, crystalline cohomology is a Weil cohomology theory for schemes introduced by Alexander Grothendieck (1966, 1968) and developed by Pierre Berthelot (1974). Its values are modules over rings of Witt vectors over the base… …   Wikipedia

  • Chronologie de l'algèbre — Le tableau de cette page fournit une chronologie sommaire des mots clefs dans le développement de l algèbre. Le découpage en grande période tient compte de l avancée des mathématiques dans le monde gréco latin, arabo musulman, et européen. Il ne… …   Wikipédia en Français

  • Chronologie de l'Algèbre — Le tableau de cette page fournit une chronologie sommaire des mots clefs dans le développement de l algèbre. Le découpage en grande période tient compte de l avancée des mathématiques dans le monde gréco latin, arabo musulman, et européen. Il ne… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”