Conjugate element (field theory)

Conjugate element (field theory)

In mathematics, in particular field theory, the conjugate elements of an algebraic element α, over a field K, are the (other) roots of the minimal polynomial


of α over K.



The cube roots of the number one are:

\sqrt[3]{1} = \begin{cases} \ \ 1 \\ -\frac{1}{2}+\frac{\sqrt{3}}{2}i \\ -\frac{1}{2}-\frac{\sqrt{3}}{2}i \end{cases}

The latter two roots are conjugate elements in the field K = Q[√−3].


If K is given inside an algebraically closed field C, then the conjugates can be taken inside C. Usually one includes α itself in the set of conjugates. If no such C is specified, one can take the conjugates in some relatively small field L. The smallest possible choice for L is to take a splitting field over K of pK, containing α. If L is any normal extension of K containing α, then by definition it already contains such a splitting field.

Given then a normal extension L of K, with automorphism group Aut(L/K) = G, and containing α, any element g(α) for g in G will be a conjugate of α, since the automorphism g sends roots of p to roots of p. Conversely any conjugate β of α is of this form: in other words, G acts transitively on the conjugates. This follows as K(α) is K-isomorphic to K(β) by irreducibility of the minimal polynomial, and any isomorphism of fields F and F' that maps polynomial p to p' can be extended to an isomorphism of the splitting fields of p over F and p' over F', respectively.

In summary, the conjugate elements of α are found, in any normal extension L of K that contains K(α), as the set of elements g(α) for g in Aut(L/K). The number of repeats in that list of each element is the separable degree [L:K(α)]sep.

A theorem of Kronecker states that if α is an algebraic integer such that α and all of its conjugates in the complex numbers have absolute value 1, then α is a root of unity. There are quantitative forms of this, stating more precisely bounds (depending on degree) on the largest absolute value of a conjugate that imply that an algebraic integer is a root of unity.


  • David S. Dummit, Richard M. Foote, Abstract algebra, 3rd ed., Wiley, 2004.

External links

Weisstein, Eric W., "Conjugate Elements" from MathWorld.

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Field of definition — In mathematics, the field of definition of an algebraic variety V is essentially the smallest field to which the coefficients of the polynomials defining V can belong. Given polynomials, with coefficients in a field K , it may not be obvious… …   Wikipedia

  • Algebraic number field — In mathematics, an algebraic number field (or simply number field) F is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector… …   Wikipedia

  • Algebraic number theory — In mathematics, algebraic number theory is a major branch of number theory which studies the algebraic structures related to algebraic integers. This is generally accomplished by considering a ring of algebraic integers O in an algebraic number… …   Wikipedia

  • LTI system theory — or linear time invariant system theory is a theory in the field of electrical engineering, specifically in circuits, signal processing, and control theory, that investigates the response of a linear, time invariant system to an arbitrary input… …   Wikipedia

  • Deligne–Lusztig theory — In mathematics, Deligne–Lusztig theory is a way of constructing linear representations of finite groups of Lie type using ℓ adic cohomology with compact support, introduced by Deligne Lusztig (1976). Lusztig (1984) used these representations to… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Character theory — This article refers to the use of the term character theory in mathematics. For the media studies definition, see Character theory (Media). In mathematics, more specifically in group theory, the character of a group representation is a function… …   Wikipedia

  • List of abstract algebra topics — Abstract algebra is the subject area of mathematics that studies algebraic structures, such as groups, rings, fields, modules, vector spaces, and algebras. The phrase abstract algebra was coined at the turn of the 20th century to distinguish this …   Wikipedia

  • Modular representation theory — is a branch of mathematics, and that part of representation theory that studies linear representations of finite group G over a field K of positive characteristic. As well as having applications to group theory, modular representations arise… …   Wikipedia

  • Corps fini — Les défauts de gravure, l usure, la poussière que l on observe à la surface d un disque compact nécessitent un codage redondant de l information, qui permet de corriger les erreurs de lecture. Ce code correcteur d erreur utilise des codes de Reed …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”