Bicommutant

Bicommutant

In algebra, the bicommutant of a subset "S" of a semigroup (such as an algebra or a group) is the commutant of the commutant of that subset. It is also known as the double commutant or second commutant and is written S^{prime prime}.

The bicommutant is particularly useful in operator theory, due to the von Neumann double commutant theorem, which relates the algebraic and analytic structures of operator algebras. Specifically, it shows that if "M" is a unital, self-adjoint operator algebra in the C*-algebra "B(H)", for some Hilbert space "H", then the weak closure, strong closure and bicommutant of "M" are equal. This tells us that a unital C*-subalgebra "M" of "B(H)" is a von Neumann algebra if, and only if, M = M^{prime prime}, and that if not, the von Neumann algebra it generates is M^{prime prime}.

The bicommutant of "S" always contains "S". So S^{prime prime prime} = (S^{prime prime})^{prime} subseteq S^{prime}. On the other hand, S^{prime} subseteq (S^{prime})^{prime prime} = S^{prime prime prime}. So S^{prime} = S^{prime prime prime}, i.e. the commutant of the bicommutant of "S" is equal to the commutant of "S". By induction, we have:

:S^{prime} = S^{prime prime prime} = S^{prime prime prime prime prime} = ldots = S^{2n-1} = ldots

and

:S subseteq S^{prime prime} = S^{prime prime prime prime} = S^{prime prime prime prime prime prime} = ldots = S^{2n} = ldots

for "n" > 1.

It is clear that, if "S"1 and "S"2 are subsets of a semigroup,

:( S_1 cup S_2 )' = S_1 ' cap S_2 ' .

If it is assumed that S_1 = S_1" , and S_2 = S_2", (this is the case, for instance, for von Neumann algebras), then the above equality gives

:(S_1' cup S_2')" = (S_1 " cap S_2 ")' = (S_1 cap S_2)' .

See also

* von Neumann double commutant theorem


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Bicommutant — En algèbre, le bicommutant[1] d un sous ensemble d un magma est le commutant du commutant de ce sous ensemble. Il est aussi appelé double commutant ou second commutant. De même qu on note le commutant de X par une lettre primée X’, son… …   Wikipédia en Français

  • Theoreme du bicommutant de von Neumann — Théorème du bicommutant de von Neumann Le théorème du bicommutant de von Neumann est un théorème d analyse fonctionnelle qui établit un lien entre l adhérence d un ensemble d opérateurs linéaires bornés sur un espace de Hilbert dans certaines… …   Wikipédia en Français

  • Théorème bicommutant de von Neumann — Théorème du bicommutant de von Neumann Le théorème du bicommutant de von Neumann est un théorème d analyse fonctionnelle qui établit un lien entre l adhérence d un ensemble d opérateurs linéaires bornés sur un espace de Hilbert dans certaines… …   Wikipédia en Français

  • Théorème du bicommutant de von neumann — Le théorème du bicommutant de von Neumann est un théorème d analyse fonctionnelle qui établit un lien entre l adhérence d un ensemble d opérateurs linéaires bornés sur un espace de Hilbert dans certaines topologies et le bicommutant de cet… …   Wikipédia en Français

  • Von Neumann bicommutant theorem — In mathematics, the von Neumann bicommutant theorem in functional analysis relates the closure of a set of bounded operators on a Hilbert space in certain topologies to the bicommutant of that set. In essence, it is a connection between the… …   Wikipedia

  • Théorème du bicommutant de von Neumann — Le théorème du bicommutant de von Neumann est un théorème d analyse fonctionnelle qui établit un lien entre l adhérence d un ensemble d opérateurs linéaires bornés sur un espace de Hilbert dans certaines topologies et le bicommutant de cet… …   Wikipédia en Français

  • Commutant — In algebra, the commutant of a subset S of a semigroup (such as an algebra or a group) A is the subset S′ of elements of A commuting with every element of S. In other words, S′ forms a subsemigroup. This generalizes the concept of centralizer in… …   Wikipedia

  • John von Neumann — Von Neumann redirects here. For other uses, see Von Neumann (disambiguation). The native form of this personal name is Neumann János. This article uses the Western name order. John von Neumann …   Wikipedia

  • Cohomology operation — In mathematics, the cohomology operation concept became central to algebraic topology, particularly homotopy theory, from the 1950s onwards, in the shape of the simple definition that if F is a functor defining a cohomology theory, then a… …   Wikipedia

  • Jacobson density theorem — In mathematics, the Jacobson density theorem in ring theory is an important generalization of the Artin Wedderburn theorem. It is named for Nathan Jacobson.It states that given any irreducible module M for a ring R , R is dense in its bicommutant …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”