Friedel-Crafts reaction

Friedel-Crafts reaction

The Friedel-Crafts reactions are a set of reactions developed by Charles Friedel and James Crafts in 1877. [Friedel, C.; Crafts, J. M. "Compt. Rend." 1877, "84", [http://gallica.bnf.fr/ark:/12148/bpt6k30410/f1386.table 1392] & [http://gallica.bnf.fr/ark:/12148/bpt6k30410/f1444.table 1450] .] There are two main types of Friedel-Crafts reactions: alkylation reactions and acylation reactions. This reaction type is part of electrophilic aromatic substitution.

Several reviews have been written. [Price, C. C. "Org. React." 1946, "3", 1. (Review)] [Groves, J. K. "Chem. Soc. Rev." 1972, "1", 73. (Review)] [Eyley, S. C. "Comp. Org. Syn." 1991, "2", 707-731. (Review)] [Heaney, H. "Comp. Org. Syn." 1991, "2", 733-752. (Review)]

Friedel-Crafts alkylation

Friedel-Crafts alkylation involves the alkylation of an aromatic ring and an alkyl halide using a strong Lewis acid catalyst. With anhydrous ferric chloride as a catalyst, the alkyl group attaches at the former site of the chloride ion.

This reaction has one big disadvantage, namely that the product is more nucleophilic than the reactant due to the electron donating alkyl-chain. Therefore, another hydrogen is substituted with an alkyl-chain, which leads to overalkylation of the molecule. Also, if the chlorine is not on a tertiary carbon, carbocation rearrangement reaction will occur. This is due to the relative stability of the tertiary carbocation over the secondary and primary carbocations.

Steric hindrance can be exploited to limit the number of alkylations, as in the t-butylation of 1,4-dimethoxybenzene.

Alkylations are not limited to alkyl halides: Friedel-Crafts reactions are possible with any carbocationic intermediate such as those derived from alkenes and a protic acid or lewis acid, enones and epoxides. In one study the electrophile is a bromonium ion derived from an alkene and NBS: [cite journal | author = S. Hajra, B. Maji and S. Bar | title = Samarium Triflate-Catalyzed Halogen-Promoted Friedel-Crafts Alkylation with Alkenes | year = 2007 | journal = Org. Lett. | volume = 9 | issue = 15 | pages = 2783–2786 | doi = 10.1021/ol070813t]

In this reaction samarium(III) triflate is believed to activate the NBS halogen donor in halonium ion formation.

Friedel-Crafts dealkylation

Friedel-Crafts alkylation is a reversible reaction. In a reversed Friedel-Crafts reaction or Friedel-Crafts dealkylation, alkyl groups can be removed in the presence of protons and a Lewis acid.

For example, in a multiple addition of ethyl bromide to benzene, "ortho" and "para" substitution is expected after the first monosubstitution step because an alkyl group is an activating group. However, the actual reaction product is 1,3,5-triethylbenzene with all alkyl groups as a meta substituent. [cite journal | author = K. Wallace, R. Hanes, E. Anslyn, J. Morey, K. Kilway and J. Siegel | title = Preparation of 1,3,5-Tris(aminomethyl)-2,4,6-triethylbenzene from Two Versatile 1,3,5-Tri(halosubstituted) 2,4,6-Triethylbenzene Derivatives | year = 2005 | journal = Synthesis | volume = 2005| issue = 12 | pages = 2080–2083 | doi = 10.1055/s-2005-869963] Thermodynamic reaction control makes sure that thermodynamically favored "meta" substitution with steric hindrance minimized takes prevalence over less favorable "ortho" and "para" substitution by chemical equilibration. The ultimate reaction product is thus the result of a series of alkylations and dealkylations.

Friedel-Crafts acylation

Friedel-Crafts acylation is the acylation of aromatic rings with an acyl chloride using a strong Lewis acid catalyst. Friedel-Crafts acylation is also possible with acid anhydrides. Reaction conditions are similar to the Friedel-Crafts alkylation mentioned above. This reaction has several advantages over the alkylation reaction. Due to the electron-withdrawing effect of the carbonyl group, the ketone product is always less reactive than the original molecule, so multiple acylations do not occur. Also, there are no carbocation rearrangements, as the carbonium ion is stabilized by a resonance structure in which the positive charge is on the oxygen.

The viability of the Friedel-Crafts acylation depends on the stability of the acyl chloride reagent. Formyl chloride, for example, is too unstable to be isolated. Thus, synthesis of benzaldehyde via the Friedel-Crafts pathway requires that formyl chloride be synthesized "in situ". This is accomplished via the Gattermann-Koch reaction, accomplished by reacting benzene with carbon monoxide and hydrogen chloride under high pressure, catalyzed by a mixture of aluminium chloride and cuprous chloride.

Reaction mechanism

In a simple mechanistic view, the first step consists of dissociation of a chlorine atom to form an acyl cation:

:

This is followed by nucleophilic attack of the arene toward the acyl group:

:

Finally, a chlorine atom reacts to form HCl, and the AlCl3 catalyst is regenerated:

:

Friedel-Crafts hydroxyalkylation

Arenes react with certain aldehydes and ketones to the hydroxyalkylated product for example in the reaction of the mesityl derivative of glyoxal with benzene [cite journal | author = R. C. Fuson, H. H. Weinstock and G. E. Ullyot | title = A New Synthesis of Benzoins. 2,4,6-Trimethylbenzoin | year = 1935 | journal = J. Am. Chem. Soc. | volume = 57 | issue = 10 | pages = 1803–1804 | doi = 10.1021/ja01313a015] to form a benzoin with an alcohol rather than a carbonyl group:

cope & variations

This reaction is related to several classic named reactions:
* The acylated reaction product can be converted into the alkylated product via a Clemmensen reduction.
* The Gattermann-Koch reaction can be used to synthesize benzaldehyde from benzene.
* The Gatterman reaction describes arene reactions with hydrocyanic acid
* The Houben-Hoesch reaction describes arene reactions with nitriles
* A reaction modification with an aromatic phenyl ester as a reactant is called the Fries rearrangement.
* In the Scholl reaction two arenes couple directly (sometimes called Friedel-Crafts arylation).
* In the Zincke-Suhl reaction p-cresol is alkylated to a cyclohexadienone with tetrachloromethane
* In the Blanc chloromethylation a chloromethyl group is added to an arene with formaldehyde, hydrochloric acid and zinc chloride.
* The Bogert-Cook Synthesis (1933) involves the dehydration and isomerization of "1-β-phenylethylcyclohexanol" to the octahydro derivative of phenanthrene [This reaction with
phosphorus pentoxide: cite journal | author = J. v. d. Kamp and E. Mosettig | title = Trans- And Cis-As-Octahydrophenanthrene | year = 1936 | journal = J. Am. Chem. Soc. | volume = 58 | issue = 6 | pages = 1062–1063 | doi = 10.1021/ja01297a514
]
* The Darzens-Nenitzescu Synthesis of Ketones (1910, 1936) [ [http://www.drugfuture.com/OrganicNameReactions/onr94.htm Darzens-Nenitzescu Synthesis of Ketones ] ] involves the acylation of cyclohexene with acetyl chloride to methylcyclohexenylketone.
* In the related Nenitzescu reductive acylation (1936) [ [http://www.drugfuture.com/OrganicNameReactions/onr277.htm Nenitzescu Reductive Acylation ] ] a saturated hydrocarbon is added making it a reductive acylation to methylcyclohexylketone
* In a green chemistry variation aluminium chloride is replaced by graphite in an alkylation of "p"-xylene with 2-bromobutane. This variation will not work with primary halides from which less carbocation involvement is inferred. [cite journal | title = A Green Alternative to Aluminum Chloride Alkylation of Xylene | author = Sereda, Grigoriy A.; Rajpara, Vikul B. | journal = J. Chem. Educ. | year = 2007 | volume = 2007 | issue = 84 | pages = 692 | url = http://jchemed.chem.wisc.edu/Journal/Issues/2007/Apr/abs692.html]

Dyes

Friedel-Crafts reactions have been used in the synthesis of several triarylmethane and xanthene dyes ["Synthesis of Triarylmethane and Xanthene Dyes Using Electrophilic Aromatic Substitution Reactions" James V. McCullagh and Kelly A. Daggett J. Chem. Educ. 2007, 84, 1799. [http://jchemed.chem.wisc.edu/Journal/Issues/2007/Nov/abs1799.html Abstract] ] . Examples are the synthesis of thymolphthalein (a pH indicator) from two equivalents of thymol and phthalic anhydride:

:

A reaction of phthalic anhydride with resorcinol in the presence of zinc chloride gives the fluorophore Fluorescein. Replacing resorcinol by N,N-diethylaminophenol in this reaction gives rhodamine B:

:

Haworth reactions

The Haworth reaction is a classic method for the synthesis of tetralone ["Syntheses of alkylphenanthrenes. Part I. 1-, 2-, 3-, and 4-Methylphenanthrenes"Robert Downs Haworth, J. Chem. Soc. 1932, 1125 DOI|10.1039/JR9320001125] ["Name Reactions: A Collection of Detailed Reaction Mechanisms" By Jie Jack Li Published 2003 Springer ISBN 3540402039] . In it benzene is reacted with succinic anhydride, the intermediate product is reduced and a second FC acylation takes place with addition of acid.

:

In a related reaction, phenanthrene is synthesized from naphthalene and succinic anhydride in a series of steps.

:

References

FC reactions in Org. Synth.

Friedel-Crafts reactions appear in Organic Syntheses:
* Alkylations:
** Diphenylacetone, Organic Syntheses, Coll. Vol. 3, p.343 (1955); Vol. 29, p.38 (1949) [http://orgsynth.org/orgsyn/pdfs/CV3P0343.pdf Article link] .
** Reaction of "p"-xylene with chloromethane to durene Organic Syntheses, Coll. Vol. 2, p.248 (1943); Vol. 10, p.32 (1930). [http://orgsynth.org/orgsyn/pdfs/CV2P0248.pdf Article link]
** Synthesis of benzophenone from benzene and tetrachloromethane Organic Syntheses, Coll. Vol. 1, p.95 (1941); Vol. 8, p.26 (1928). [http://orgsynth.org/orgsyn/pdfs/CV1P0095.pdf Article link]
* Acylations:
** Dibenzoylethylene Organic Syntheses, Coll. Vol. 3, p.248 (1955); Vol. 20, p.29 (1940) [http://orgsynth.org/orgsyn/pdfs/CV3P0248.pdf Article link] .
** reaction of acenaphthene plus succinic acid Organic Syntheses, Coll. Vol. 3, p.6 (1955); Vol. 20, p.1 (1940). [http://orgsynth.org/orgsyn/pdfs/CV3P0006.pdf Article link]
** Desoxybenzoin Organic Syntheses, Coll. Vol. 2, p.156 (1943); Vol. 12, p.16 (1932). [http://orgsynth.org/orgsyn/pdfs/CV2P0156.pdf Article link]
** Acylation of a phenanthrene compound Organic Syntheses, Vol. 80, p.227 [http://orgsynth.org/orgsyn/pdfs/v80p0227.pdf Link]
** Reaction of bromobenzene with acetic anhydride Organic Syntheses, Coll. Vol. 1, p.109 (1941); Vol. 5, p.17 (1925). [http://orgsynth.org/orgsyn/pdfs/CV1P0109.pdf Article link]
** beta-methylanthraquinone, Organic Syntheses, Coll. Vol. 1, p.353 (1941); Vol. 4, p.43 (1925). [http://orgsynth.org/orgsyn/pdfs/CV1P0353.pdf Article link]
** Benzoylation of ferrocene Organic Syntheses, Coll. Vol. 6, p.625 (1988); Vol. 56, p.28 (1977). [http://orgsynth.org/orgsyn/pdfs/CV6P0625.pdf Article link]

ee also

*Darzens-Nenitzescu synthesis of ketones
*Nencki reaction


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Friedel–Crafts reaction — The Friedel–Crafts reactions are a set of reactions developed by Charles Friedel and James Crafts in 1877.[1] There are two main types of Friedel–Crafts reactions: alkylation reactions and acylation reactions. This reaction type is a form of… …   Wikipedia

  • friedel-crafts reaction — frē|d]elˈkraf(t)s , |freˌd] noun Usage: usually capitalized F&C Etymology: after Charles Friedel died 1899 French chemist & James M. Crafts died 1917 American chemist : a synthetic reaction in organic chemistry in which anhydrous aluminum… …   Useful english dictionary

  • Friedel-Crafts reaction — /free del krafts , krahfts / a reaction for the synthesis of hydrocarbons and ketones by the alkylation or acylation of an aromatic compound in the presence of a catalyst, typically anhydrous aluminum chloride. [1895 1900; after French chemist… …   Universalium

  • Friedel-Crafts reaction — noun a substitution reaction in which an alkyl or acyl functional group replaces a hydrogen atom of an aromatic nucleus; it is catalyzed by aluminium chloride …   Wiktionary

  • Reaction De Friedel-Crafts — Réaction de Friedel Crafts Les réactions de Friedel Crafts sont des réactions chimiques de type substitution électrophile aromatique au cours desquelles un cycle benzènique est alkylé (substitution d un atome d hydrogène par un groupement alkyle) …   Wikipédia en Français

  • Reaction de Friedel-Crafts — Réaction de Friedel Crafts Les réactions de Friedel Crafts sont des réactions chimiques de type substitution électrophile aromatique au cours desquelles un cycle benzènique est alkylé (substitution d un atome d hydrogène par un groupement alkyle) …   Wikipédia en Français

  • Reaction de friedel-crafts — Réaction de Friedel Crafts Les réactions de Friedel Crafts sont des réactions chimiques de type substitution électrophile aromatique au cours desquelles un cycle benzènique est alkylé (substitution d un atome d hydrogène par un groupement alkyle) …   Wikipédia en Français

  • Réaction de friedel-crafts — Les réactions de Friedel Crafts sont des réactions chimiques de type substitution électrophile aromatique au cours desquelles un cycle benzènique est alkylé (substitution d un atome d hydrogène par un groupement alkyle) ou acylé (substitution d… …   Wikipédia en Français

  • Réaction de Friedel-Crafts — Les réactions de Friedel Crafts sont des réactions chimiques de type substitution électrophile aromatique au cours desquelles un cycle benzénique est alkylé (substitution d un atome d hydrogène par un groupement alkyle) ou acylé (substitution d… …   Wikipédia en Français

  • Friedel-Crafts-Acylierung — Unter der Friedel Crafts Acylierung (nach Charles Friedel und James Mason Crafts) versteht man die Einführung eines Acylrests (Acylierung) in ein aromatisches System durch eine elektrophile aromatische Substitution, meist mit… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”