Degen's eight-square identity

Degen's eight-square identity

In mathematics, Degen's eight-square identity establishes that the product of two numbers, each of which being a sum of eight squares, is itself a sum of eight squares. Namely:

(a_1^2+a_2^2+a_3^2+a_4^2+a_5^2+a_6^2+a_7^2+a_8^2)(b_1^2+b_2^2+b_3^2+b_4^2+b_5^2+b_6^2+b_7^2+b_8^2)=\,
(a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4 - a_5b_5 - a_6b_6 - a_7b_7 - a_8b_8)^2+\,
(a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3 + a_5b_6 - a_6b_5 - a_7b_8 + a_8b_7)^2+\,
(a_1b_3 - a_2b_4 + a_3b_1 + a_4b_2 + a_5b_7 + a_6b_8 - a_7b_5 - a_8b_6)^2+\,
(a_1b_4 + a_2b_3 - a_3b_2 + a_4b_1 + a_5b_8 - a_6b_7 + a_7b_6 - a_8b_5)^2+\,
(a_1b_5 - a_2b_6 - a_3b_7 - a_4b_8 + a_5b_1 + a_6b_2 + a_7b_3 + a_8b_4)^2+\,
(a_1b_6 + a_2b_5 - a_3b_8 + a_4b_7 - a_5b_2 + a_6b_1 - a_7b_4 + a_8b_3)^2+\,
(a_1b_7 + a_2b_8 + a_3b_5 - a_4b_6 - a_5b_3 + a_6b_4 + a_7b_1 - a_8b_2)^2+\,
(a_1b_8 - a_2b_7 + a_3b_6 + a_4b_5 - a_5b_4 - a_6b_3 + a_7b_2 + a_8b_1)^2\,

First discovered by Ferdinand Degen around 1818, the identity was independently rediscovered by John Thomas Graves (1843) and Arthur Cayley (1845). The latter two derived it while working on an extension of quaternions called octonions. In algebraic terms the identity means that the norm of product of two octonions equals the product of their norms: \|ab\| = \|a\|\|b\|. Similar statements are true for quaternions (Euler's four-square identity), complex numbers (the Brahmagupta-Fibonacci two-square identity) and real numbers. However, in 1898 Adolf Hurwitz proved that there is no similar identity for 16 squares (sedenions) or any other number of squares except for 1,2,4 and 8.

Note that each quadrant reduces to a version of Euler's four-square identity:

(a_1^2+a_2^2+a_3^2+a_4^2)(b_1^2+b_2^2+b_3^2+b_4^2)=\,
(a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4)^2+\,
(a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3)^2+\,
(a_1b_3 - a_2b_4 + a_3b_1 + a_4b_2)^2+\,
(a_1b_4 + a_2b_3 - a_3b_2 + a_4b_1)^2\,

and,

(a_5^2+a_6^2+a_7^2+a_8^2)(b_1^2+b_2^2+b_3^2+b_4^2)=\,
(a_5b_1 + a_6b_2 + a_7b_3 + a_8b_4)^2+\,
(a_5b_2 - a_6b_1 + a_7b_4 - a_8b_3)^2+\,
(a_5b_3 - a_6b_4 - a_7b_1 + a_8b_2)^2+\,
(a_5b_4 + a_6b_3 - a_7b_2 - a_8b_1)^2\,

and similarly for the other two quadrants.

See also

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Euler's four-square identity — In mathematics, Euler s four square identity says that the product of two numbers, each of which being a sum of four squares, is itself a sum of four squares. Specifically::(a 1^2+a 2^2+a 3^2+a 4^2)(b 1^2+b 2^2+b 3^2+b 4^2)=,::(a 1 b 1 a 2 b 2 a… …   Wikipedia

  • Degen — may refer to: bladed weaponn A type of historical bladed weapon in German speaking Europe The historical German term for a medieval dagger Swiss degen, a type of short sword of the late medieval and Renaissance period the German term for a dress… …   Wikipedia

  • Identité des huit carrés de Degen — En mathématiques, et plus précisément en algèbre, l’identité des huit carrés de Degen montre que le produit de deux nombres, dont chacun est une somme de huit carrés, est lui même une somme de huit carrés. Identité de Degen Si les ai et les bj… …   Wikipédia en Français

  • Тождество восьми квадратов — Тождество восьми квадратов  математическая теорема о том, что произведение сумм восьми квадратов является суммой восьми квадратов. Действительно …   Википедия

  • List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”