Normed division algebra

Normed division algebra

In mathematics, a normed division algebra A is a division algebra over the real or complex numbers which is also a normed vector space, with norm || · || satisfying the following property:

\|xy\| = \|x\| \|y\| for all x and y in A.

While the definition allows normed division algebras to be infinite-dimensional, this, in fact, does not occur. The only normed division algebras over the reals (up to isomorphism) are:

  • the real numbers, denoted by R
  • the complex numbers, denoted by C
  • the quaternions, denoted by H
  • the octonions, denoted by O,

a result known as Hurwitz's theorem. In all of the above cases, the norm is given by the absolute value. Note that the first three of these are actually associative algebras, while the octonions form an alternative algebra (a weaker form of associativity).

The only associative normed division algebra over the complex numbers are the complex numbers themselves.

Normed division algebras are a special case of composition algebras. Composition algebras are unital algebras with a multiplicative quadratic form. General composition algebras need not be division algebras, however—they may contain zero divisors. Over the real numbers this gives rise to three additional algebras: the split-complex numbers, the split-quaternions, and the split-octonions.

See also


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Division algebra — In the field of mathematics called abstract algebra, a division algebra is, roughly speaking, an algebra over a field, in which division is possible. Contents 1 Definitions 2 Associative division algebras 3 Not necessarily asso …   Wikipedia

  • Division (mathematics) — Divided redirects here. For other uses, see Divided (disambiguation). For the digital implementation of mathematical division, see Division (digital). In mathematics, especially in elementary arithmetic, division (÷ …   Wikipedia

  • Algebra over a field — This article is about a particular kind of vector space. For other uses of the term algebra , see algebra (disambiguation). In mathematics, an algebra over a field is a vector space equipped with a bilinear vector product. That is to say, it is… …   Wikipedia

  • Composition algebra — In mathematics, a composition algebra A over a field K is a unital (but not necessarily associative) algebra over K together with a nondegenerate quadratic form N which satisfies for all x and y in A.  The quadratic form N is often referred… …   Wikipedia

  • Algebra — This article is about the branch of mathematics. For other uses, see Algebra (disambiguation). Algebra is the branch of mathematics concerning the study of the rules of operations and relations, and the constructions and concepts arising from… …   Wikipedia

  • Banach algebra — In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers which at the same time is also a Banach space. The algebra multiplication and the Banach… …   Wikipedia

  • Quaternion — Quaternions, in mathematics, are a non commutative extension of complex numbers. They were first described by the Irish mathematician Sir William Rowan Hamilton in 1843 and applied to mechanics in three dimensional space. They find uses in both… …   Wikipedia

  • Octonion — In mathematics, the octonions are a normed division algebra over the real numbers, usually represented by the capital letter O, using boldface O or blackboard bold . There are only four such algebras, the other three being the real numbers R, the …   Wikipedia

  • Produit vectoriel en dimension 7 — En mathématiques, et plus précisément en algèbre linéaire, le produit vectoriel en dimension 7 est une loi de composition interne d un espace euclidien à 7 dimensions, ayant certaines propriétés du produit vectoriel usuel (en dimension 3) ;… …   Wikipédia en Français

  • Triality — In mathematics, triality is a relationship between three vector spaces, analogous to the duality relation between dual vector spaces. Most commonly, it describes those special features of the group Spin(8), the double cover of 8 dimensional… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”