Mason's rule

Mason's rule

Mason's gain formula (MGF) is a method for finding the transfer function of a linear signal-flow graph (SFG). The formula was derived by Samuel Jefferson Mason[1] and is named after its discoverer. MGF is an alternate method to finding the transfer function algebraically by labeling each signal, writing down the equation for how that signal depends on other signals, and then solving the multiple equations for the output signal in terms of the input signal. MGF provides a step by step method to obtain the transfer function from a SFG. Often, MGF can be determined by inspection of the SFG. The method can easily handle SFGs with many variables and loops including loops with inner loops. The method, being simple and mechanical and can often require less effort and is less error prone than the direct algebraic method. MGF comes up often in the context of control systems and digital filters because control systems and digital filters are often represented by SFGs.


Contents

Formula

The gain formula is as follows:

G = \frac{y_\text{out}}{y_\text{in}} = \frac{ \sum_{k=1}^N  {G_k \Delta _k} }{ \Delta\ }


\Delta = 1 - \sum L_i + \sum L_iL_j- \sum L_iL_jL_k + \cdots + (-1)^m \sum \cdots +\cdots

where:

  • Δ = the determinant of the graph.
  • yin = input-node variable
  • yout = output-node variable
  • G = complete gain between yin and yout
  • N = total number of forward paths between yin and yout
  • Gk = gain of the kth forward path between yin and yout
  • Li = loop gain of each closed loop in the system
  • LiLj = product of the loop gains of any two non-touching loops (no common nodes)
  • LiLjLk = product of the loop gains of any three pairwise nontouching loops
  • Δk = the cofactor value of Δ for the kth forward path, with the loops touching the kth forward path removed. I.e. Remove those parts of the graph which form the loop, while retaining the parts needed for the forward path.

Procedure

To use this technique,

  1. Make a list of all forward paths, and their gains, and label these Gk.
  2. Make a list of all the loops and their gains, and label these Li (for i loops). Make a list of all pairs of non-touching loops, and the products of their gains (LiLj). Make a list of all pairwise non-touching loops taken three at a time (LiLjLk), then four at a time, and so forth, until there are no more.
  3. Compute the determinant Δ and cofactors Δk.
  4. Apply the formula.

Examples

Circuit containing two-port

Signal flow graph of a circuit containing a two port. The forward path from input to output is shown in a different color.

The transfer function from Vin to V2 is desired.

There is only one forward path:

  • Vin to V1 to I2 to V2 with gain  G_1 = -y_{21} R_L \,

There are three loops:

  • V1 to I1 to V1 with gain  L_1 = -R_{in} y_{11} \,
  • V2 to I2 to V2 with gain  L_2 = -R_L y_{22} \,
  • V1 to I2 to V2 to I1 to V1 with gain  L_3 = y_{21} R_L y_{12} R_{in} \,


 \Delta = 1 - ( L_1 + L_2 + L_3 ) + ( L_1 L_2 ) \, note: L1 and L2 do not touch each other whereas L3 touches both of the other loops.
 \Delta_1 = 1 \, note: the forward path touches all the loops so all that is left is 1.
 G = \frac { G_1 \Delta_1 } { \Delta }   =  \frac { -y_{21} R_L } {1 + R_{in}y_{11} + R_L y_{22} - y_{21} R_L y_{12} R_{in} + R_{in}y_{11} R_L y_{22} }    \,


Digital IIR biquad filter

The signal flow graph (SFG) for a digital infinite impulse response bi-quad filter. This SFG has three forward paths and two loops.

Digital filters are often diagramed as signal flow graphs.

There are two loops
  •  L_1 = -a_1 Z^{-1} \,
  •  L_2 = -a_2 Z^{-2} \,
 \Delta = 1 - ( L_1 + L_2 ) \, Note, the two loops touch so there is no term for their product.
There are three forward paths
  •  G_0 = b_0  \,
  •  G_1 = b_1 Z^{-1} \,
  •  G_2 = b_2 Z^{-2} \,
All the forward paths touch all the loops so  \Delta_0 = \Delta_1 = \Delta_2 = 1  \,
 G = \frac { G_0 \Delta_0 +G_1 \Delta_1  + G_2 \Delta_2  } {\Delta} \,
 G = \frac { b_0 + b_1 Z^{-1} + b_2 Z^{-2} } {1 +a_1 Z^{-1} + a_2 Z^{-2} } \,


Servo

Angular position servo and signal flow graph. θC = desired angle command, θL = actual load angle, KP = position loop gain, VωC = velocity command, VωM = motor velocity sense voltage, KV = velocity loop gain, VIC = current command, VIM = current sense voltage, KC = current loop gain, VA = power amplifier output voltage, VM = effective voltage across the inductance, LM = motor inductance, IM = motor current, RM = motor resistance, RS = current sense resistance, KM = motor torque constant (Nm/amp) , T = torque, M = momment of inertia of all rotating components α = angular acceleration, ω = angular velocity, β = mechanical damping, GM = motor back EMF constant, GT = tachometer conversion gain constant,. There is one forward path (shown in a different color) and six feedback loops. The drive shaft assumed to be stiff enough to not treat as a spring. Constants are shown in black and variables in purple.


The signal flow graph has six loops. They are:

  •  L_0 = -  \frac {\beta} {sM} \,


  •  L_1 = \frac{-1} {sL_M( R_M + R_S)} \,


  •  L_2 = \, \frac {-G_M K_M} {s^2 L_M M}


  •  L_3 = \frac {-K_C R_S} {sL_M} \,


  •  L_4 = \frac {-K_V K_C K_M G_T} {s^2 L_M M} \,


  •  L_5 = \frac {-K_P K_V K_C K_M } {s^3 L_M M} \,


 \Delta = 1 - (L_0+L_1+L_2+L_3+L_4+L_5) + (L_0 L_1 + L_0 L_3)\,


There is one forward path:


  •  g_0 = \frac {-K_P K_V K_C K_M } {s^3 L_M M} \,


The forward path touches all the loops therefore the co-factor Δ0 = 1


And the gain from input to output is   \frac {\theta_L} {\theta_C} = \frac {g_0 \Delta_0} {\Delta} \,



Equivalent matrix form

Mason's rule can be stated in a simple matrix form. Assume \mathbf{T} is the transient matrix of the graph where t_{nm} = \left[\mathbf{T}\right]_{nm} is the sum transmittance of branches from node m toward node n. Then, the gain from node m to node n of the graph is equal to u_{nm} = \left[\mathbf{U}\right]_{nm}, where

 \mathbf{U} = \left ( \mathbf{I} - \mathbf{T} \right ) ^ {-1} ,

and \mathbf{I} is the identity matrix.

Mason's Rule is also particularly useful for deriving the z-domain transfer function of discrete networks that have inner feedback loops embedded within outer feedback loops (nested loops). If the discrete network can be drawn as a signal flow graph, then the application of Mason's Rule will give that network's z-domain H(z) transfer function.

Notes

  1. ^ Mason, Samuel J. (July 1956). "Feedback Theory - Further Properties of Signal Flow Graphs". Proceedings of the IRE: 920–926. 

References

  • Bolton, W. Newnes (1998). Control Engineering Pocketbook. Oxford: Newnes. 
  • Van Valkenburg, M. E. (1974). Network Analysis (3rd ed.). Englewood Cliffs, NJ: Prentice-Hall. 

A mason rule example


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Mason — may refer to: Masonry worker, who builds with concrete, brick or stone Bricklayer, a craftsman who lays bricks to construct brickwork Mason (surname), a common English surname Mason (band), Dutch electronic music duo Mason (crater), on the Moon… …   Wikipedia

  • Mason's Invariant — Introduction When trying to solve a seemingly difficult problem, Sam said to concentrate on the easier ones first; the rest, including the hardest ones, will follow, recalled Andrew Viterbi, co founder and former vice president of Qualcomm. He… …   Wikipedia

  • Mason's theorem — This disambiguation page lists articles associated with the same title. If an internal link led you here, you may wish to change the link to point directly to the intended article. Mason s theorem may refer to either of the following: The Mason… …   Wikipedia

  • Mason Dixon (band) — Mason Dixon Origin Beaumont, Texas, United States Genres Country Years active 1983–1990 Labels Texas, Premier One, Capitol Nashville …   Wikipedia

  • Mason City, Iowa —   City   Principal Financial Group Building in Downtown Mason City …   Wikipedia

  • Mason Tobin — Texas Rangers No. 55 Relief Pitcher …   Wikipedia

  • Ernest Mason Satow — Infobox Person name = Sir Ernest Mason Satow image size = 300px caption = The young Ernest Mason Satow. Photograph taken in Paris, December 1869. birth date = June 30 1843 birth place = Clapton, London, England death date = August 26 1929 death… …   Wikipedia

  • Pablo Mason — Squadron Leader Paul Pablo Mason RAF (Rtd.) is a former Royal Air Force pilot, who led the lead RAF Tornado squadron during the Gulf War, and subsequently wrote about his experiences. Mason is known for his handlebar moustache, and his Biggles… …   Wikipedia

  • Richard Angelus a S. Francisco Mason —     Richard Angelus a S. Francisco Mason     † Catholic Encyclopedia ► Richard Angelus a S. Francisco Mason     English or Irish Franciscan writer; b. in Wiltshire, 1599; d. at Douai, 30 Dec, 1678. There is some dispute as to the nationality of… …   Catholic encyclopedia

  • David Marshall Mason — (7 December 1865 19 March 1945) was a Scottish Liberal, later Liberal National politician, banker and businessman. Contents 1 Family and Education 2 Business interests 3 Political career …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”