Perron's formula

Perron's formula

In mathematics, and more particularly in analytic number theory, Perron's formula is a formula due to Oskar Perron to calculate the sum of an arithmetical function, by means of an inverse Mellin transform.

tatement

Let {a(n)} be an arithmetic function, and let

: g(s)=sum_{n=1}^{infty} frac{a(n)}{n^{s be the corresponding Dirichlet series. Presume the Dirichlet series to be absolutely convergent for Re(s)>sigma_a. Then Perron's formula is

: A(x) = {sum_{nle x^{star} frac{a(n)}{n^s} =frac{1}{2pi i}int_{c-iinfty}^{c+iinfty} g(s+z)frac{x^{z{z} dz;

Here, the star on the summation indicates that the last term of the sum must be multiplied by 1/2 when "x" is an integer. The formula requires c>0 and x>0 real, but otherwise arbitrary. The formula holds for Re(s)>sigma_a - c

Proof

An easy sketch of the proof comes from taking the Abel's sum formula

: g(s)=sum_{n=1}^{infty} frac{a(n)}{n^{s} }=sint_{0}^{infty} A(x)x^{-(s+1) } dx.

This is nothing but a Laplace transform under the variable change x=e^t. Inverting it one gets the Perron's formula.

Examples

Because of its general relationship to Dirichlet series, the formula is commonly applied to many number-theoretic sums. Thus, for example, one has the famous integral representation for the Riemann zeta function:

:zeta(s)=sint_1^infty frac{lfloor x floor}{x^{s+1,dx

and a similar formula for Dirichlet L-functions:

:L(s,chi)=sint_1^infty frac{A(x)}{x^{s+1,dx

where

:A(x)=sum_{nle x} chi(n)

and chi(n) is a Dirichlet character. Other examples appear in the articles on the Mertens function and the von Mangoldt function.

References

* Page 243 of Apostol IANT
*
* Tenebaum, Gérald (1995). "Introduction to analytic and probabilistic number theory", Cambridge University Press, Cambridge. ISBN 0521412617.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Fórmula de Perron — En matemática, y más precisamente en teoría analítica de números, la fórmula de Perron es una fórmula dada por Oskar Perron para calcular la suma de una función aritmética, mediante el uso de una transformada de Mellin inversa. Contenido 1… …   Wikipedia Español

  • Perron–Frobenius theorem — In linear algebra, the Perron–Frobenius theorem, proved by Oskar Perron (1907) and Georg Frobenius (1912), asserts that a real square matrix with positive entries has a unique largest real eigenvalue and that the corresponding… …   Wikipedia

  • Oskar Perron — Perron in 1948 Photo courtesy MFO Born May 7, 1880( …   Wikipedia

  • Formule de Perron — Pour les articles homonymes, voir Perron. En mathématiques, et plus particulièrement en théorie analytique des nombres, la formule de Perron est une formule d Oskar Perron pour calculer la somme d une fonction arithmétique, au moyen d une… …   Wikipédia en Français

  • List of mathematics articles (P) — NOTOC P P = NP problem P adic analysis P adic number P adic order P compact group P group P² irreducible P Laplacian P matrix P rep P value P vector P y method Pacific Journal of Mathematics Package merge algorithm Packed storage matrix Packing… …   Wikipedia

  • Prime number theorem — PNT redirects here. For other uses, see PNT (disambiguation). In number theory, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers. The prime number theorem gives a general description of how the primes are… …   Wikipedia

  • Heidelberg University Faculty of Mathematics and Computer Science — Infobox University Faculty name = Faculty of Mathematics and Computer Science native name = Fakultät für Mathematik und Informatik established = 2002 dean = Prof. Dr. R. Rannacher staff = 27 students = 1100 website = http://www.math.uni… …   Wikipedia

  • Mertens function — to n=10,000 Mertens function to n=10,000,000 In …   Wikipedia

  • Dirichlet series — In mathematics, a Dirichlet series is any series of the form where s and an are complex numbers and n = 1, 2, 3, ... . It is a special case of general Dirichlet series. Dirichlet series play a variety of important roles in analytic number theory …   Wikipedia

  • Von Mangoldt function — In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. Contents 1 Definition 2 Dirichlet series 3 Mellin transform …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”