Cyclotomic identity

Cyclotomic identity

In mathematics, the cyclotomic identity states that

{1 \over 1-\alpha z}=\prod_{j=1}^\infty\left({1 \over 1-z^j}\right)^{M(\alpha,j)}

where M is Moreau's necklace-counting function,

M(\alpha,n)={1\over n}\sum_{d\,|\,n}\mu\left({n \over d}\right)\alpha^d,

and μ(·) is the classic Möbius function of number theory.

The name comes from the denominator, 1 − z j, which is the product of cyclotomic polynomials.

The left hand side of the cyclotomic identity is the generating function for the free associative algebra on α generators, and the right hand side is the generating function for the universal enveloping algebra of the free Lie algebra on α generators. The cyclotomic identity witnesses the fact that these two algebras are isomorphic.

There is also a symmetric generalization of the cyclotomic identity found by Strehl:

\prod_{j=1}^\infty\left({1 \over 1-\alpha z^j}\right)^{M(\beta,j)}=\prod_{j=1}^\infty\left({1 \over 1-\beta z^j}\right)^{M(\alpha,j)}

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • List of combinatorics topics — This is a list of combinatorics topics.A few decades ago it might have been said that combinatorics is little more than a way to classify poorly understood problems, and some standard remedies. Great progress has been made since 1960.This page is …   Wikipedia

  • Moreau's necklace-counting function — In combinatorial mathematics, Moreau s necklace counting function:M(alpha,n)={1over n}sum {d,|,n}muleft({n over d} ight)alpha^dwhere μ is the classic Möbius function, counts the number of necklaces asymmetric under rotation (also called Lyndon… …   Wikipedia

  • Necklace polynomial — In combinatorial mathematics, the necklace polynomials, or (Moreau s) necklace counting function are the polynomials M(α,n) in α such that By Möbius inversion they are given by where μ is the classic Möbius function. The necklace polynomials are… …   Wikipedia

  • Root of unity — The 5th roots of unity in the complex plane In mathematics, a root of unity, or de Moivre number, is any complex number that equals 1 when raised to some integer power n. Roots of unity are used in many branches of mathematics, and are especially …   Wikipedia

  • Algebraic number field — In mathematics, an algebraic number field (or simply number field) F is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector… …   Wikipedia

  • Bernoulli number — In mathematics, the Bernoulli numbers Bn are a sequence of rational numbers with deep connections to number theory. They are closely related to the values of the Riemann zeta function at negative integers. There are several conventions for… …   Wikipedia

  • Inverse Galois problem — In mathematics, the inverse Galois problem concerns whether or not every finite group appears as the Galois group of some Galois extension of the rational numbers Q. This problem, first posed in the 19th centuryFact|date=February 2007, is… …   Wikipedia

  • List of trigonometric identities — Cosines and sines around the unit circle …   Wikipedia

  • Discriminant of an algebraic number field — A fundamental domain of the ring of integers of the field K obtained from Q by adjoining a root of x3 − x2 − 2x + 1. This fundamental domain sits inside K ⊗QR. The discriminant of K is 49 = 72.… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”