Primorial

Primorial

The primorial has two similar but distinct meanings. The name is attributed to Harvey Dubner and is a portmanteau of "prime" and "factorial". The primorial "pn#" is defined as the product of the first "n" primes:Mathworld | urlname=Primorial | title=Primorial] OEIS|id=A002110]

:p_n# = prod_{k=1}^n p_k

where "pk" is the "k"th prime number. For instance, "p"5# signifies the product of the first 5 primes:

:p_5# = 2 imes 3 imes 5 imes 7 imes 11 = 2310.

The first few primorials "pn#" are:

:1, 2, 6, 30, 210, 2310. OEIS|id=A002110

The sequence also includes "p"0# = 1 as empty product.

Asymptotically, primorials "pn#" grow according to:

:p_n# = exp left [ (1 + o(1)) cdot n log n ight ] ,

where "exp" is the exponential function "e""x" and "o" is the "little-o" notation (see Big O notation). Its natural logarithm is the first Chebyshev function, written heta(n) or hetasym(n), which approaches the linear "n" for large "n". [Mathworld | urlname=ChebyshevFunctions | title=Chebyshev Functions]

In contrast, "n#" is defined as the product of those primes ≤ "n", for "n" ≥ 1:OEIS|id=A034386]

:n# = egin{cases} 1 & n = 1 \ n imes ((n-1)#) & n > 1 And n ext{ is prime} \ (n-1)# & n > 1 And n ext{ is composite}.end{cases}

This is equivalent to:

:n# = p_{pi(n)}#

where, π(n) is the prime-counting function OEIS|id=A000720, giving the number of primes ≤ "n".

For example, 7# represents the product of those primes ≤ 7:

:7# = 2 imes 3 imes 5 imes 7 = 210.

Since π(7) = 4, this can be calculated as:

:7# = p_{pi(7)}# = p_4# = 210.

The first primorials "n#" are:

:1, 2, 6, 6, 30, 30, 210, 210, 210, 210, 2310.

Note that every term n# for composite "n" simply duplicates the preceding term ("n"−1)#, as evident in the definition given.

Primorials "n#" grow according to::log n# sim n.

The idea of multiplying all known primes occurs in a proof of the infinitude of the prime numbers; it is applied to show a contradiction in the idea that the primes could be finite in number.

Primorials play a role in the search for prime numbers in additive arithmetic progressions. For instance, 2236133941 + 23# results in a prime, beginning a sequence of thirteen primes found by repeatedly adding 23#, and ending with 5136341251. 23# is also the common difference in arithmetic progressions of fifteen and sixteen primes.

Every highly composite number is a product of primorials (e.g. 360 = 2·6·30).

Primorials are all square-free integers, and each one has more distinct prime factors than any number smaller than it. For each primorial "n", the fraction phi(n)/n is smaller than for any lesser integer, where phi is the Euler totient function.

Any completely multiplicative function is defined by its values at primorials, since it is defined by its values at primes, which can be recovered by division of adjacent values.

Table of primorials

See also

* Primorial prime

Notes

References

* Harvey Dubner, "Factorial and primorial primes". " J. Recr. Math.", 19, 197–203, 1987.


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Primorial — Mit Primorial (von engl. primorial) und der Primfakultät bezeichnet man das Produkt aller Primzahlen, die eine bestimmte Zahl nicht übersteigen. Die Begriffe sind eng mit der Fakultät verwandt und kommen vor allem in dem mathematischen Gebiet der …   Deutsch Wikipedia

  • Primorial — Esquema del primordial. El primorial de un número n se define como el producto de todos los números primos menores o iguales a él, y se indica como n#. Los primoriales son números definidos en la demostración de la infinitud de los números primos …   Wikipedia Español

  • primorial — noun The product of all primes less than or equal to a stated number. The primorial of 6 is 30 …   Wiktionary

  • Primorial — El primorial de un número n se define como el producto de todos los números primos menores o iguales a él, y se indica como n#. Los primoriales son números definidos en la demostración de la infinitud de los números primos de Euclides. La… …   Enciclopedia Universal

  • Primorial prime — In mathematics, primorial primes are prime numbers of the form pn # ± 1, where:: pn # is the primorial of pn .: pn # − 1 is prime for n = 2, 3, 5, 6, 13, 24, ... OEIS|id=A057704: pn # + 1 is prime for n = 1, 2, 3, 4, 5, 11, ...… …   Wikipedia

  • Primfakultät — Mit Primorial (von engl. primorial) und der Primfakultät bezeichnet man das Produkt aller Primzahlen, die eine bestimmte Zahl nicht übersteigen. Die Begriffe sind eng mit der Fakultät verwandt und kommen vor allem in dem mathematischen Gebiet der …   Deutsch Wikipedia

  • Raíz mixta — Saltar a navegación, búsqueda Los sistemas de numeración de raíz mixta (o también base combinada) son sistemas de numeración posicionales no estandard en los que la base o raíz varía de una posición a otra. Tal representación numérica es… …   Wikipedia Español

  • Smarandache-Funktion — In der Mathematik ist die Smarandache Funktion eine Folge bzw. eine zahlentheoretische Funktion, die mit der Fakultät verwandt ist. Historisch gesehen wurde sie zuerst von Lucas[1] (1883), Neuberg[2] (1887) und Kempner[3] (1918) betrachtet.… …   Deutsch Wikipedia

  • 2010 год в науке — 2008 – 2009  2010  2011 – 2012 См. также: Другие события в 2010 году 2010 год в СНГ объявлен Годом науки и инноваций.[1] Содержание 1 …   Википедия

  • Factorial — n n! 0 1 1 1 2 2 3 6 4 24 5 120 6 720 7 …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”