Gauss-Manin connection

Gauss-Manin connection

In mathematics, the Gauss-Manin connection is a connection on a certain vector bundle over a family of algebraic varieties. The base space is taken to be the set of parameters defining the family, and the fibres are taken to be the de Rham cohomology group H^k_{DR}(V) of the variety "V".

Flat sections of the bundle are described by differential equations; the best-known of these is the Picard-Fuchs equation, which arises when the family of varieties is taken to be the family of elliptic curves. In intuitive terms, when the family is locally trivial, cohomology classes can be moved from one fibre in the family to nearby fibres, providing the 'flat section' concept in purely topological terms. The existence of the connection is to be inferred from the flat sections.

Example

A commonly cited example is the Dwork construction of the Picard-Fuchs equation. Let:V_lambda(x,y,z) = x^3+y^3+z^3 - lambda xyz=0 ;

be the projective variety describing the elliptic curve. Here, lambda is a free parameter describing the curve; it is an element of the complex projective line. Thus, the base space of the bundle is taken to be the projective line. For a fixed lambda in the base space, consider an element omega_lambda of the associated de Rham cohomology group

:omega_lambda in H^1_{Dr}(V_lambda)

Each such element corresponds to a period of the elliptic curve. The cohomology is two-dimensional. The Gauss-Manin connection corresponds to the second-order differential equation

:(lambda^3-27) frac{partial^2 omega_lambda}{partial lambda^2} +3lambda^2 frac{partial omega_lambda}{partial lambda} + lambda omega_lambda =0

D-module explanation

In the more abstract setting of D-module theory, the existence of such equations is subsumed in a general discussion of the direct image.

External links

*


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Juri Iwanowitsch Manin — Yuri Manin am ICM 2006 in Madrid, mit Ksenia Semenova Yuri Manin (russisch Юрий Иванович Манин/ Juri Iwanowitsch Manin; * 16. Februar 1937 in Simferopol, heute Ukraine) …   Deutsch Wikipedia

  • Juri Manin — Yuri Manin am ICM 2006 in Madrid, mit Ksenia Semenova Yuri Manin (russisch Юрий Иванович Манин/ Juri Iwanowitsch Manin; * 16. Februar 1937 in Simferopol, heute Ukraine) …   Deutsch Wikipedia

  • Yurij Manin — Yuri Manin am ICM 2006 in Madrid, mit Ksenia Semenova Yuri Manin (russisch Юрий Иванович Манин/ Juri Iwanowitsch Manin; * 16. Februar 1937 in Simferopol, heute Ukraine …   Deutsch Wikipedia

  • Yuri Manin — am ICM 2006 in Madrid, mit Ksenia Semenova Yuri Manin (russisch Юрий Иванович Манин / Juri Iwanowitsch Manin; * 16. Februar 1937 in Simferopol, heute …   Deutsch Wikipedia

  • Yuri Manin — Pour les articles homonymes, voir Manin (homonymie). Yuri Manin à l ICM de Madrid en 2006, à côté de Ksenia Semenova Yuri Ivanovitch Manin …   Wikipédia en Français

  • List of topics named after Carl Friedrich Gauss — Carl Friedrich Gauss (1777 ndash; 1855) is the eponym of all of the topics listed below. Topics including Gauss *Carl Friedrich Gauss Prize, a mathematics award *Degaussing, to demagnetize an object *Gauss (unit), a unit of magnetic field (B)… …   Wikipedia

  • Yuri I. Manin — Infobox Scientist name = Yuri Ivanovitch Manin image width birth date = birth date and age|1937|2|16|mf=y birth place = Simferopol, Soviet Union residence = Germany nationality = Russian/German death date = death place = field = Mathematician… …   Wikipedia

  • Grothendieck connection — In algebraic geometry and synthetic differential geometry, a Grothendieck connection is a way of viewing connections in terms of descent data from infinitesimal neighbourhoods of the diagonal.Introduction and motivationThe Grothendieck connection …   Wikipedia

  • Isomonodromic deformation — In mathematics, the equations governing the isomonodromic deformation of meromorphic linear systems of ordinary differential equations are, in a fairly precise sense, the most fundamental exact nonlinear differential equations. As a result, their …   Wikipedia

  • List of mathematics articles (G) — NOTOC G G₂ G delta space G networks Gδ set G structure G test G127 G2 manifold G2 structure Gabor atom Gabor filter Gabor transform Gabor Wigner transform Gabow s algorithm Gabriel graph Gabriel s Horn Gain graph Gain group Galerkin method… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”