D'Alembert's formula

D'Alembert's formula

In mathematics, and specifically partial differential equations, d´Alembert's formula is the general solution to the one-dimensional wave equation: :u_{tt}-c^2u_{xx}=0,, u(x,0)=g(x),, u_t(x,0)=h(x),for -infty < x0. It is named after the mathematician Jean le Rond d'Alembert.

The characteristics of the PDE are xpm ct=mathrm{const},, so use the change of variables mu=x+ct, eta=x-ct, to transform the PDE to u_{mueta}=0,. The general solution of this PDE is u(mu,eta) = F(mu) + G(eta), where F, and G, are C^1, functions. Back in x,t, coordinates,

:u(x,t)=F(x+ct)+G(x-ct),:u, is C^2, if F, and G, are C^2,.

This solution u, can be interpreted as two waves with constant velocity c, moving in opposite directions along the x-axis.

Now consider this solution with the Cauchy data u(x,0)=g(x), u_t(x,0)=h(x),.

Using u(x,0)=g(x), we get F(x)+G(x)=g(x),.

Using u_t(x,0)=h(x), we get cF'(x)-cG'(x)=h(x),.

Integrate the last equation to get

:cF(x)-cG(x)=int_{-infty}^x h(xi) dxi + c_1,

Now solve this system of equations to get

:F(x) = frac{-1}{2c}left(-cg(x)-left(int_{-infty}^x h(xi) dxi +c_1 ight) ight),

:G(x) = frac{-1}{2c}left(-cg(x)+left(int_{-infty}^x h(xi) dxi +c_1 ight) ight),

Now, using

:u(x,t) = F(x+ct)+G(x-ct),

d´Alembert's formula becomes:

:u(x,t) = frac{1}{2}left [g(x-ct) + g(x+ct) ight] + frac{1}{2c} int_{x-ct}^{x+ct} h(xi) dxi

External links

* [http://www.exampleproblems.com/wiki/index.php/PDE27 An example] of solving a nonhomogeneous wave equation from www.exampleproblems.com


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • d'Alembert's formula — In mathematics, and specifically partial differential equations, d´Alembert s formula is the general solution to the one dimensional wave equation: for . It is named after the mathematician Jean le Rond d Alembert.[1] The characteristics of the… …   Wikipedia

  • Alembert — and its variants may refer to:People: *Jean le Rond d Alembert (1717 1783), French philosopher and mathematician *Sandy D Alemberte (b. 1933), American lawyer and former politicianPlaces: *D Alembert (crater), a lunar impact craterMathematics and …   Wikipedia

  • ALEMBERT (J. Le Rond d’) — L’un des mathématiciens et physiciens les plus importants du XVIIIe siècle, d’Alembert fut aussi un philosophe marquant des Lumières. Dans les sciences aussi bien qu’en philosophie, il incorpora la tradition du rationalisme cartésien aux… …   Encyclopédie Universelle

  • Fórmula de d'Alembert — La fórmula de D Alembert es la solución general de la ecuación de onda, una ecuación en derivadas parciales hiperbólica, en un espacio de una dimensión. para . Fue descubierta por el matemático Jean le Rond d Alembert. Las características de esta …   Wikipedia Español

  • Fórmula general (matemáticas) — Este artículo o sección, en su redacción actual, corresponde a una definición de diccionario y debería estar en el Wikcionario, probablemente bajo la entrada fórmula general (matemáticas). Si amplías este artículo con contenido enciclopédico… …   Wikipedia Español

  • Jean le Rond d'Alembert — d Alembert redirects here. For other uses, see d Alembert (disambiguation). Jean Baptiste le Rond d Alembert Jean Baptiste le Rond d Alembert, pastel by Maurice Quentin de La Tour …   Wikipedia

  • Jean Le Rond d'Alembert — Saltar a navegación, búsqueda Jean Le Rond d Alembert …   Wikipedia Español

  • Jean le Rond d'Alembert — Nacimiento 16 de noviembre de 1717 París …   Wikipedia Español

  • Paradoja de D'Alembert — Saltar a navegación, búsqueda Jean le Rond d Alembert La paradoja de D Alembert, es una contradicción a la que llegó D Alembert luego de estudiar matemáticamente el fenómeno de la resistencia producida sobre un cuerpo cuando una corriente de… …   Wikipedia Español

  • Wave equation — Not to be confused with Wave function. The wave equation is an important second order linear partial differential equation for the description of waves – as they occur in physics – such as sound waves, light waves and water waves. It arises in… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”