d'Alembert's formula

d'Alembert's formula

In mathematics, and specifically partial differential equations, d´Alembert's formula is the general solution to the one-dimensional wave equation:

u_{tt}-c^2u_{xx}=0,\, u(x,0)=g(x),\, u_t(x,0)=h(x),

for -\infty < x<\infty,\,\, t>0. It is named after the mathematician Jean le Rond d'Alembert.[1]

The characteristics of the PDE are x\pm ct=\mathrm{const}\,, so use the change of variables \mu=x+ct, \eta=x-ct\, to transform the PDE to u_{\mu\eta}=0\,. The general solution of this PDE is u(\mu,\eta) = F(\mu) + G(\eta)\, where F\, and G\, are C^1\, functions. Back in x,t\, coordinates,

u(x,t)=F(x+ct)+G(x-ct)\,
u\, is C^2\, if F\, and G\, are C^2\,.

This solution u\, can be interpreted as two waves with constant velocity c\, moving in opposite directions along the x-axis.

Now consider this solution with the Cauchy data u(x,0)=g(x), u_t(x,0)=h(x)\,.

Using u(x,0)=g(x)\, we get F(x)+G(x)=g(x)\,.

Using u_t(x,0)=h(x)\, we get cF'(x)-cG'(x)=h(x)\,.

Integrate the last equation to get

cF(x)-cG(x)=\int_{-\infty}^x h(\xi) \, d\xi + c_1.\,

Now solve this system of equations to get

F(x) = \frac{-1}{2c}\left(-cg(x)-\left(\int_{-\infty}^x h(\xi) \, d\xi +c_1 \right)\right)\,
G(x) = \frac{-1}{2c}\left(-cg(x)+\left(\int_{-\infty}^x h(\xi) d\xi +c_1 \right)\right).\,

Now, using

u(x,t) = F(x+ct)+G(x-ct)\,

d´Alembert's formula becomes:

u(x,t) = \frac{1}{2}\left[g(x-ct) + g(x+ct)\right] + \frac{1}{2c} \int_{x-ct}^{x+ct} h(\xi) \, d\xi.

Notes

  1. ^ D'Alembert (1747) "Recherches sur la courbe que forme une corde tenduë mise en vibration" (Researches on the curve that a tense cord forms [when] set into vibration), Histoire de l'académie royale des sciences et belles lettres de Berlin, vol. 3, pages 214-219. See also: D'Alembert (1747) "Suite des recherches sur la courbe que forme une corde tenduë mise en vibration" (Further researches on the curve that a tense cord forms [when] set into vibration), Histoire de l'académie royale des sciences et belles lettres de Berlin, vol. 3, pages 220-249. See also: D'Alembert (1750) "Addition au mémoire sur la courbe que forme une corde tenduë mise en vibration," Histoire de l'académie royale des sciences et belles lettres de Berlin, vol. 6, pages 355-360.

External links

  • An example of solving a nonhomogeneous wave equation from www.exampleproblems.com

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • D'Alembert's formula — In mathematics, and specifically partial differential equations, d´Alembert s formula is the general solution to the one dimensional wave equation: :u {tt} c^2u {xx}=0,, u(x,0)=g(x),, u t(x,0)=h(x),for infty < x0. It is named after the… …   Wikipedia

  • Alembert — and its variants may refer to:People: *Jean le Rond d Alembert (1717 1783), French philosopher and mathematician *Sandy D Alemberte (b. 1933), American lawyer and former politicianPlaces: *D Alembert (crater), a lunar impact craterMathematics and …   Wikipedia

  • ALEMBERT (J. Le Rond d’) — L’un des mathématiciens et physiciens les plus importants du XVIIIe siècle, d’Alembert fut aussi un philosophe marquant des Lumières. Dans les sciences aussi bien qu’en philosophie, il incorpora la tradition du rationalisme cartésien aux… …   Encyclopédie Universelle

  • Fórmula de d'Alembert — La fórmula de D Alembert es la solución general de la ecuación de onda, una ecuación en derivadas parciales hiperbólica, en un espacio de una dimensión. para . Fue descubierta por el matemático Jean le Rond d Alembert. Las características de esta …   Wikipedia Español

  • Fórmula general (matemáticas) — Este artículo o sección, en su redacción actual, corresponde a una definición de diccionario y debería estar en el Wikcionario, probablemente bajo la entrada fórmula general (matemáticas). Si amplías este artículo con contenido enciclopédico… …   Wikipedia Español

  • Jean le Rond d'Alembert — d Alembert redirects here. For other uses, see d Alembert (disambiguation). Jean Baptiste le Rond d Alembert Jean Baptiste le Rond d Alembert, pastel by Maurice Quentin de La Tour …   Wikipedia

  • Jean Le Rond d'Alembert — Saltar a navegación, búsqueda Jean Le Rond d Alembert …   Wikipedia Español

  • Jean le Rond d'Alembert — Nacimiento 16 de noviembre de 1717 París …   Wikipedia Español

  • Paradoja de D'Alembert — Saltar a navegación, búsqueda Jean le Rond d Alembert La paradoja de D Alembert, es una contradicción a la que llegó D Alembert luego de estudiar matemáticamente el fenómeno de la resistencia producida sobre un cuerpo cuando una corriente de… …   Wikipedia Español

  • Wave equation — Not to be confused with Wave function. The wave equation is an important second order linear partial differential equation for the description of waves – as they occur in physics – such as sound waves, light waves and water waves. It arises in… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”