Lie bialgebra

Lie bialgebra

In mathematics, a Lie bialgebra is the Lie-theoretic case of a bialgebra: its a set with a Lie algebra and a Lie coalgebra structure which are compatible.

It is a bialgebra where the comultiplication is skew-symmetric and satisfies a dual Jacobi identity, so that the dual vector space is a Lie algebra, whereas the comultiplication is a 1-cocycle, so that the multiplication and comultiplication are compatible. The cocycle condition implies that, in practice, one studies only classes of bialgebras that are cohomologous to a Lie bialgebra on a coboundary.

They are also called Poisson-Hopf algebras, and are the Lie algebra of a Poisson-Lie group.

Lie bialgebras occur naturally in the study of the Yang-Baxter equations.

Contents

Definition

More precisely, comultiplication on the algebra, \delta:\mathfrak{g} \to \mathfrak{g} \otimes \mathfrak{g}, is called the cocommutator, and must satisfy two properties. The dual

\delta^*:\mathfrak{g}^* \otimes \mathfrak{g}^* \to \mathfrak{g}^*

must be a Lie bracket on \mathfrak{g}^*, and it must be a cocycle:

\delta([X,Y]) = \left(
\operatorname{ad}_X \otimes 1 + 1 \otimes \operatorname{ad}_X
\right) \delta(Y) - \left(
\operatorname{ad}_Y \otimes 1 + 1 \otimes \operatorname{ad}_Y
\right) \delta(X)

where \operatorname{ad}_XY=[X,Y] is the adjoint.

Relation to Poisson-Lie groups

Let G be a Poisson-Lie group, with f_1,f_2 \in C^\infty(G) being two smooth functions on the group manifold. Let ξ = (df)e be the differential at the identity element. Clearly, \xi \in \mathfrak{g}^*. The Poisson structure on the group then induces a bracket on \mathfrak{g}^*, as

[\xi_1,\xi_2]=(d\{f_1,f_2\})_e\,

where {,} is the Poisson bracket. Given η be the Poisson bivector on the manifold, define ηR to be the right-translate of the bivector to the identity element in G. Then one has that

\eta^R:G\to \mathfrak{g} \otimes \mathfrak{g}

The cocommutator is then the tangent map:

\delta = T_e \eta^R\,

so that

[\xi_1,\xi_2]= \delta^*(\xi_1 \otimes \xi_2)

is the dual of the cocommutator.

See also


References

  • H.-D. Doebner, J.-D. Hennig, eds, Quantum groups, Proceedings of the 8th International Workshop on Mathematical Physics, Arnold Sommerfeld Institute, Claausthal, FRG, 1989, Springer-Verlag Berlin, ISBN 3-540-53503-9.
  • Vyjayanthi Chari and Andrew Pressley, A Guide to Quantum Groups, (1994), Cambridge University Press, Cambridge ISBN 0-521-55884-0.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Bialgebra — In mathematics, a bialgebra over a field K is a structure which is both a unital associative algebra and a coalgebra over K , such that these structures are compatible.Compatibility means that the comultiplication and the counit are both unital… …   Wikipedia

  • Lie algebra — In mathematics, a Lie algebra is an algebraic structure whose main use is in studying geometric objects such as Lie groups and differentiable manifolds. Lie algebras were introduced to study the concept of infinitesimal transformations. The term… …   Wikipedia

  • Poisson–Lie group — In mathematics, a Poisson–Lie group is a Poisson manifold that is also a Lie group, with the group multiplication being compatible with the Poisson algebra structure on the manifold. The algebra of a Poisson–Lie group is a Lie… …   Wikipedia

  • Quasi-Frobenius Lie algebra — In mathematics, a quasi Frobenius Lie algebra :(mathfrak{g}, [,,,,,,,] ,eta ) over a field k is a Lie algebra :(mathfrak{g}, [,,,,,,,] ) equipped with a nondegenerate skew symmetric bilinear form :eta : mathfrak{g} imesmathfrak{g} o k, which is …   Wikipedia

  • Quantum group — In mathematics and theoretical physics, quantum groups are certain noncommutative algebras that first appeared in the theory of quantum integrable systems, and which were then formalized by Vladimir Drinfel d and Michio Jimbo. There is no single …   Wikipedia

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

  • Yang–Baxter equation — The Yang–Baxter equation is an equation which was first introduced in the field of statistical mechanics. It takes its name from independent work of C. N. Yang from 1968, and R. J. Baxter from 1982.Parameter dependent Yang Baxter equationLet A be …   Wikipedia

  • Hopf algebra — In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously a (unital associative) algebra, a coalgebra, and has an antiautomorphism, with these structures compatible.Hopf algebras occur naturally in algebraic… …   Wikipedia

  • Hopf-Algebra — Hopfalgebra berührt die Spezialgebiete Mathematik Abstrakte Algebra Lineare Algebra Kommutative Algebra ist Spezialfall von Bialgebra Eine Hopf Algebra – benannt …   Deutsch Wikipedia

  • Formal group — In mathematics, a formal group law is (roughly speaking) a formal power series behaving as if it were the product of a Lie group. They were first defined in 1946 by S. Bochner. The term formal group sometimes means the same as formal group law,… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”