Biconjugate gradient method

Biconjugate gradient method

In mathematics, more specifically in numerical analysis, the biconjugate gradient method is an algorithm to solve systems of linear equations

:A x= b.,

Unlike the conjugate gradient method, this algorithm does not require the matrix A to be self-adjoint, but instead one needs to perform multiplications by the conjugate transpose A^*.

The algorithm

# Choose x_0, y_0, a regular preconditioner M (frequently M^{-1}=1 is used) and c;
# r_0 leftarrow b-A x_0, s_0 leftarrow c-A^* y_0,;
# d_0 leftarrow M^{-1} r_0, f_0 leftarrow M^{-*} s_0,;
# for k=0, 1, dots, do
# alpha_k leftarrow {s^*_k M^{-1} r_k over f_k^* A d_k},;
# x_{k+1} leftarrow x_k+ alpha_k d_k, left( y_{k+1} leftarrow y_k + overline{alpha_k} f_k ight),;
# r_{k+1} leftarrow r_k- alpha_k A d_k ,, s_{k+1} leftarrow s_k- overline{alpha_k} A^* f_k , (r_k=b-A x_k and s_k= c- A^* y_k are the residuums);
# eta_k leftarrow {s_{k+1}^* M^{-1} r_{k+1} over s^*_k M^{-1} r_k},;
# d_{k+1} leftarrow M^{-1} r_{k+1} + eta_k d_k,, f_{k+1} leftarrow M^{-*} s_{k+1} + overline{eta_k} f_k,.

Discussion

The BiCG method is numerically unstable, but very important from theoretical point of view: Define the iteration steps by x_k:=x_j+ P_k A^{-1}left(b - A x_j ight) and y_k:=y_j+A^{-*}P_k^*left(c-A^* y_j ight) (j) using the related projection:P_k:= mathbf{u_k} left(mathbf{v_k}^* A mathbf{u_k} ight)^{-1} mathbf{v_k}^* A,where mathbf{u_k}=left(u_0, u_1, dots u_{k-1} ight) and mathbf{v_k}=left(v_0, v_1, dots v_{k-1} ight). These related projections may be iterated themselves, as :P_{k+1}= P_k+ left( 1-P_k ight) u_k otimes {v_k^* Aleft(1-P_k ight) over v_k^* Aleft(1-P_k ight) u_k}.

The new directions d_k:= left(1-P_k ight) u_k and f_k:= left( A left(1- P_k ight) A^{-1} ight)^* v_k then are orthogonal to the residuums: v_i^* r_k= f_i^* r_k=0 and s_k^* u_j = s_k^* d_j= 0, which themselves satisfy r_k= A left( 1- P_k ight) A^{-1} r_j and s_k= left( 1- P_k ight) ^* s_j(i,j).

The biconjugate gradient method now makes a special choice and uses the setting :u_k:= M^{-1} r_k and v_k:=M^{-*} s_k.This special choice allows to avoid direct evaluations of P_k and A^{-1}, and subsequently leads to the algorithm as stated above.

Properties

* If A= A^* is self-adjoint, y_0= x_0 and c=b, then r_k= s_k, d_k= f_k, and the conjugate gradient method produces the same sequence x_k= y_k.

* In finite dimensions x_n=A^{-1}b, at the latest when P_n=1: The biconjugate gradient method returns the exact solution after iterating the full space and thus is a direct method.

* The sequences produced by the algorithm are biorthogonal: f_i^* A d_j = 0 and s_i^* M^{-1} r_j=0 for i e j.

* if p_{j'} is a polynomial with degleft( p_{j'} ight) +j , then s_k^* p_{j'}left(M^{-1} A ight) u_j=0. The algorithm thus produces projections onto the Krylov subspace;

* if p_{i'} is a polynomial with i+degleft( p_{i'} ight) , then v_i^* p_{i'}left(A M^{-1} ight) r_k=0.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Conjugate gradient method — A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic,… …   Wikipedia

  • Méthode du gradient biconjugué — En mathématiques, plus spécifiquement en analyse numérique, la méthode du gradient biconjugué est un algorithme permettant de résoudre un système d équations linéaires Contrairement à la méthode du gradient conjugué, cet algorithme ne nécessite… …   Wikipédia en Français

  • Iterative method — In computational mathematics, an iterative method is a mathematical procedure that generates a sequence of improving approximate solutions for a class of problems. A specific implementation of an iterative method, including the termination… …   Wikipedia

  • Generalized minimal residual method — In mathematics, the generalized minimal residual method (usually abbreviated GMRES) is an iterative method for the numerical solution of a system of linear equations. The method approximates the solution by the vector in a Krylov subspace with… …   Wikipedia

  • Система линейных алгебраических уравнений — Система m линейных алгебраических уравнений с n неизвестными (или, линейная система, также употребляется аббревиатура СЛАУ) в линейной алгебре  это система уравнений вида (1) …   Википедия

  • List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra …   Wikipedia

  • List of algorithms — The following is a list of the algorithms described in Wikipedia. See also the list of data structures, list of algorithm general topics and list of terms relating to algorithms and data structures.If you intend to describe a new algorithm,… …   Wikipedia

  • Chebyshev iteration — In numerical linear algebra, the Chebyshev iteration is an iterative method for determining the solutions of a system of linear equations. The method is named after Russian mathematician Pafnuty Chebyshev. Chebyshev iteration avoids the… …   Wikipedia

  • List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

  • BCG — can stand for:*The Boston Consulting Group, an international management consulting firm *Bacillus Calmette Guérin, a vaccine for tuberculosis *Bandaranayaka college gampaha *Ballistocardiography, a vital sign caused by the mechanical movement of… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”