Properly discontinuous action

Properly discontinuous action

In topology and related branches of mathematics, an action of a group G on a topological space X is called proper if the map from G×X to X×X taking (g,x) to (gx,x) is proper, and is called properly discontinuous if in addition G is discrete. There are several other similar but inequivalent properties of group actions that are often confused with properly discontinuous actions.

Contents

Properly discontinuous action

A (continuous) group action of a topological group G on a topological space X is called proper if the map from G×X to X×X taking (g,x) to (gx,x) is proper. If in addition the group G is discrete then the action is called properly discontinuous (tom Dieck 1987, p. 29).

Equivalently, an action of a discrete group G on a topological space X is properly discontinuous if and only if any two points x and y have neighborhoods Ux and Uy such that there are only a finite number of group elements g with g(Ux) meeting Uy.

In the case of a discrete group G acting on a locally compact Hausdorff space X, an equivalent definition is that the action is called properly discontinuous if for all compact subsets K of X there are only a finite number of group elements g such that K and g(K) meet.

A key property of properly discontinuous actions is that the quotient space X/G is Hausdorff.

Example

Suppose that H is a locally compact Hausdorff group with a compact subgroup K. Then H acts on the quotient space X=H/K. A subgroup G of H acts properly discontinuously on X if and only if G is a discrete subgroup of H.

Similar properties

There are several other properties of group actions that are not equivalent to proper discontinuity but are frequently confused with it.

Wandering actions

A group action is called wandering or sometimes discontinuous if every point x of X has a neighborhood U that meets gU for only a finite number of elements g of G.

If X is the plane with the origin missing, and G is the infinite cyclic group generated by (x,y)→(2x,y/2) then this action is wandering but not properly discontinuous, and the quotient space is non-Hausdorff. The problem is that any neighborhood of (1,0) has infinitely many conjugates that intersect any given neighborhood of (0,1).

Discrete orbits

The group action has discrete orbits and is sometimes called discontinuous if for any two points x, y there is a neighborhood of y containing gx for only a finite number of g in G. This is equivalent to saying that the stabilizers of points are finite and every orbit has empty limit set (Thurston 1980).

See also

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Group action — This article is about the mathematical concept. For the sociology term, see group action (sociology). Given an equilateral triangle, the counterclockwise rotation by 120° around the center of the triangle acts on the set of vertices of the… …   Wikipedia

  • Geometric group action — In mathematics, specifically geometric group theory, a geometric group action is a certain type of action of a discrete group on a metric space.DefinitionIn geometric group theory, a geometry is any proper, geodesic metric space. An action of a… …   Wikipedia

  • Orbifold — This terminology should not be blamed on me. It was obtained by a democratic process in my course of 1976 77. An orbifold is something with many folds; unfortunately, the word “manifold” already has a different definition. I tried “foldamani”,… …   Wikipedia

  • Hyperbolic group — In group theory, a hyperbolic group, also known as a word hyperbolic group, Gromov hyperbolic group, negatively curved group is a finitely generated group equipped with a word metric satisfying certain properties characteristic of hyperbolic… …   Wikipedia

  • List of mathematics articles (P) — NOTOC P P = NP problem P adic analysis P adic number P adic order P compact group P group P² irreducible P Laplacian P matrix P rep P value P vector P y method Pacific Journal of Mathematics Package merge algorithm Packed storage matrix Packing… …   Wikipedia

  • Covering space — A covering map satisfies the local triviality condition. Intuitively, such maps locally project a stack of pancakes above an open region, U, onto U. In mathematics, more specifically algebraic topology, a covering map is a continuous surjective… …   Wikipedia

  • James W. Cannon — (b. January 30, 1943) is an American mathematician working in the areas of low dimensional topology and geometric group theory. He is an Orson Pratt Professor of Mathematics at the Brigham Young University.Biographical dataJames W. Cannon was… …   Wikipedia

  • Ping-pong lemma — In mathematics, the ping pong lemma, or table tennis lemma, is any of several mathematical statements which ensure that several elements in a group acting on a set freely generate a free subgroup of that group.HistoryThe ping pong argument goes… …   Wikipedia

  • Kazhdan's property (T) — In mathematics, a locally compact topological group G has property (T) if the trivial representation is an isolated point in its unitary dual equipped with the Fell topology. Informally, this means that if G acts unitarily on a Hilbert space and… …   Wikipedia

  • Graph of groups — In geometric group theory, a graph of groups is an object consisting of a collection of groups indexed by the vertices and edges of a graph, together with a family of injective homomorphisms of the edge groups into the vertex groups.There is a… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”