Flexural strength

Flexural strength

Flexural strength, also known as modulus of rupture, bend strength, or fracture strength,[dubious ] a mechanical parameter for brittle material, is defined as a material's ability to resist deformation under load. The transverse bending test is most frequently employed, in which a rod specimen having either a circular or rectangular cross-section is bent until fracture using a three point flexural test technique. The flexural strength represents the highest stress experienced within the material at its moment of rupture. It is measured in terms of stress, here given the symbol σ.

Contents

Introduction

Fig. 1 - Beam of material under bending. Extreme fibers at B (compression) and A (tension)
Fig. 2 - Stress distribution across beam

When an object formed of a single material, like a wooden beam or a steel rod, is bent (Fig. 1), it experiences a range of stresses across its depth (Fig. 2). At the edge of the object on the inside of the bend (concave face) the stress will be at its maximum compressive stress value. At the outside of the bend (convex face) the stress will be at its maximum tensile value. These inner and outer edges of the beam or rod are known as the 'extreme fibers'. Most materials fail under tensile stress before they fail under compressive stress, so the maximum tensile stress value that can be sustained before the beam or rod fails is its flexural strength.

Flexural versus tensile strength

The flexural strength would be the same as the tensile strength if the material was homogeneous. In fact, most materials have small or large defects in them which act to concentrate the stresses locally, effectively causing a localized weakness. When a material is bent only the extreme fibers are at the largest stress so, if those fibers are free from defects, the flexural strength will be controlled by the strength of those intact 'fibers'. However, if the same material was subjected to only tensile forces then all the fibers in the material are at the same stress and failure will initiate when the weakest fiber reaches its limiting tensile stress. Therefore it is common for flexural strengths to be higher than tensile strengths for the same material. Conversely, a homogeneous material with defects only on it surfaces (e.g. due to scratches) might have a higher tensile strength than flexural strength.

If we don't take into account defects of any kind, it is clear that the material will fail under a bending force which is smaller than the corresponding tensile force. Both of these forces will induce the same failure stress, whose value depends on the strength of the material.

For a rectangular sample, the resulting stress under an axial force is given by the following formula : \sigma = \frac{\digamma}{bd} . This stress is not the true stress, since the cross section of the sample is considered to be invariable (engineering stress).

  • \digamma is the axial load (force) at the fracture point
  • b is width
  • d is thickness

The resulting stress for a rectangular sample under a load in a three-point bending setup (Fig. 3) is given by the formula below (see "Measuring flexural strength").

The equation of these two stresses (failure) yields : \digamma = \frac{3FL}{2d}

Usually, L (length of the support span) is much bigger than d, so the fraction \frac{3L}{2d} is bigger than one.

Measuring flexural strength

Fig. 3 - Beam under 3 point bending

For a rectangular sample under a load in a three-point bending setup (Fig. 3):

\sigma = \frac{3FL}{2bd^2}

  • F is the load (force) at the fracture point
  • L is the length of the support span
  • b is width
  • d is thickness

For a rectangular sample under a load in a four-point bending setup where the loading span is one-third of the support span: \sigma = \frac{FL}{bd^2}

  • F is the load (force) at the fracture point
  • L is the length of the support (outer) span
  • b is width
  • d is thickness

For the 4 pt bend setup, if the loading span is 1/2 of the support span (i.e. Li = 1/2 L in Fig. 4): \sigma = \frac{3FL}{4bd^2}

If the loading span is neither 1/3 or 1/2 the support span for the 4 pt bend setup (Fig. 4):

Fig. 4 - Beam under 4 point bending

\sigma = \frac{3F(L-L_i)}{2bd^2}

  • Li is the length of the loading (inner) span

See also

References

  • J. M. Hodgkinson (2000). Mechanical Testing of Advanced Fibre Composites. Cambridge: Woodhead Publishing, Ltd. p. 132–133.
  • William D. Callister, Jr.Materials Science and Engineering.Hoken:John Wiley & Sons,Inc.,2003

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Flexural strength — Flexural strength. См. Прочность па изгиб. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и семья ; Санкт Петербург, 2003 г.) …   Словарь металлургических терминов

  • flexural strength — lenkiamasis stipris statusas T sritis Standartizacija ir metrologija apibrėžtis Didžiausias lenkimo įtempis, kuriam esant medžiaga suyra. atitikmenys: angl. bending strength; flexural strength vok. Biegefestigkeit, f rus. прочность на изгиб, f… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • flexural strength — lenkimo stipris statusas T sritis fizika atitikmenys: angl. bending strength; flexural strength vok. Biegefestigkeit, f; Biegungsfestigkeit, f rus. прочность на изгиб, f pranc. résistance à flexion, f; résistance au pliage, f; résistance de la… …   Fizikos terminų žodynas

  • flexural strength — atsparumas lenkimui statusas T sritis automatika atitikmenys: angl. flexural strength vok. Biegefestigkeit, f rus. прочность на изгиб, f; сопротивление изгибу, n pranc. résistance à la flexion, f …   Automatikos terminų žodynas

  • flexural — ˈfleksh(ə)rəl adjective 1. : of, relating to, or resulting from flexure flexural strength of wood 2. : being or characterized by flexure flexural elasticity …   Useful english dictionary

  • Three point flexural test — The three point bending flexural test provides values for the modulus of elasticityin bending E B, flexural stress sigma f, flexural strainepsilon f and the flexural stress strain response of thematerial. The main advantage of a three point… …   Wikipedia

  • bending strength — lenkiamasis stipris statusas T sritis Standartizacija ir metrologija apibrėžtis Didžiausias lenkimo įtempis, kuriam esant medžiaga suyra. atitikmenys: angl. bending strength; flexural strength vok. Biegefestigkeit, f rus. прочность на изгиб, f… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • bending strength — lenkimo stipris statusas T sritis fizika atitikmenys: angl. bending strength; flexural strength vok. Biegefestigkeit, f; Biegungsfestigkeit, f rus. прочность на изгиб, f pranc. résistance à flexion, f; résistance au pliage, f; résistance de la… …   Fizikos terminų žodynas

  • Прочность па изгиб — Flexural strength Прочность па изгиб. Свойство твердого материала, показывающее способность выдержать изгибный момент или перерезающую силу. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и… …   Словарь металлургических терминов

  • Glass ionomer cement — A Glass Ionomer Cement (GIC) is one of a class of materials commonly used in dentistry as filling materials and luting cements. These materials are based on the reaction of silicate glass powder and polyalkeonic acid. These tooth coloured… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”