- Barycentric Dynamical Time
Barycentric Dynamical Time (TDB) was a
time standard used to take account oftime dilation when calculating orbits ofplanet s,asteroid s,comet s and interplanetaryspacecraft in theSolar system . It was based on aDynamical time scale but was not well defined and notrigor ously correct as a relativistic time scale. It was subsequentlydeprecate d in favour ofBarycentric Coordinate Time (TCB), but at the 2006 General Assembly of the International Astronomical Union TDB was rehabilitated by making it a specific fixed linear transformation of TCB.History
Since ancient times, planetary
ephemerides were calculated using a time scale based on theEarth 's rotation:Universal Time (UT). In the late nineteenth century it was realised that this time scale was not uniform: the observed timing of planetary positions did not match up correctly with UT. Afteratomic clock s were invented, they were used from 1960 to realise a new uniform time scale,Ephemeris Time (ET). ET was henceforth used for the time variable in planetary ephemeris calculations.ET itself was not entirely satisfactory either. Although it was a uniform time scale within its
reference frame , it was subject totime dilation when compared with theproper time experienced by other bodies in the Solar system. Because ET was based on subjective Earth time, the Earth's orbit introduced periodic non-uniformities when comparing ET against the true independent time variable of the ephemerides. Earth time ticks slower when it is nearperihelion (in January) and faster nearaphelion (in July).In 1976 two time scales were defined to replace ET in 1984 ephemerides to take account of relativity. ET's direct successor in counting subjective Earth time was
Terrestrial Dynamical Time (TDT). The new time scale to be used for planetary ephemerides was Barycentric Dynamical Time (TDB). TDB was to tick uniformly in a reference frame comoving with thebarycentre of the Solar system, but over the long term tick at the same rate as TDT. TDT and TDB were defined in a series of resolutions at the same meeting of theInternational Astronomical Union .It was soon realized that TDB was not well defined because it was not accompanied by a general relativistic metric and because the exact relationship between TDB and TDT had not been specified. Furthermore, because the length of the TDB second is determined by clocks on Earth (as opposed to the barycentric reference frame itself) it disagrees with the SI second that would be determined by a clock at rest in the frame. As a result, in 1991 the IAU refined the notions of timescales by creating
Barycentric Coordinate Time (TCB) andGeocentric Coordinate Time (TCG). TCB is a replacement for TDB, and TCG is its equivalent for use in near-Earth space. TDT was also renamed toTerrestrial Time (TT), because there is nothing dynamical about it.Discussion
TDB is the direct successor of Ephemeris Time in that the values of physical constants, notably the
Gaussian gravitational constant , match the traditional values from pre-relativistic days.Despite IAU recommendations that TCB be used for all further calculations of solar system ephemerides, as of 2002 TDB and Ephemeris Time continue to be used, the latter by the producer of the important DE200 ephemeris and its successors at the
Jet Propulsion Laboratory . This somewhat controversial approach is taken because the timescale is fitted to observed data for the planets, and to a lesser extent some of their satellites. To adopt TDB or TCB would be to force a timestream based on terrestrial clocks, albeit "corrected" for (some) general relativistic effects, on a data set with which it might not be quite compatible. That said, the differences between Ephemeris Time and TDB appear to be immeasurably small as of 2005.Nevertheless, as greater accuracy is attained with
International Atomic Time and Ephemeris Time differences may appear; thus it seems worthwhile to retain the two timestreams, Ephemeris Time and TDB or TCB, in hopes that we can learn from any measured differences. For practical purposes the only difference between TDB and TCB is that TCB ticks faster.External links
* [http://aa.springer.de/papers/8336001/2300381.pdf Explanation of the technical difference between ephemeris time and TDB as currently defined.]
* [http://aa.usno.navy.mil/publications/docs/Circular_179.pdf United States Naval Observatory Circular 179 : The IAU Resolutions on Astronomical Reference Systems, Time Scales, and Earth Rotation Models Explanation and Implementation]
Wikimedia Foundation. 2010.