Barycentric Dynamical Time

Barycentric Dynamical Time

Barycentric Dynamical Time (TDB) was a time standard used to take account of time dilation when calculating orbits of planets, asteroids, comets and interplanetary spacecraft in the Solar system. It was based on a Dynamical time scale but was not well defined and not rigorously correct as a relativistic time scale. It was subsequently deprecated in favour of Barycentric Coordinate Time (TCB), but at the 2006 General Assembly of the International Astronomical Union TDB was rehabilitated by making it a specific fixed linear transformation of TCB.


Since ancient times, planetary ephemerides were calculated using a time scale based on the Earth's rotation: Universal Time (UT). In the late nineteenth century it was realised that this time scale was not uniform: the observed timing of planetary positions did not match up correctly with UT. After atomic clocks were invented, they were used from 1960 to realise a new uniform time scale, Ephemeris Time (ET). ET was henceforth used for the time variable in planetary ephemeris calculations.

ET itself was not entirely satisfactory either. Although it was a uniform time scale within its reference frame, it was subject to time dilation when compared with the proper time experienced by other bodies in the Solar system. Because ET was based on subjective Earth time, the Earth's orbit introduced periodic non-uniformities when comparing ET against the true independent time variable of the ephemerides. Earth time ticks slower when it is near perihelion (in January) and faster near aphelion (in July).

In 1976 two time scales were defined to replace ET in 1984 ephemerides to take account of relativity. ET's direct successor in counting subjective Earth time was Terrestrial Dynamical Time (TDT). The new time scale to be used for planetary ephemerides was Barycentric Dynamical Time (TDB). TDB was to tick uniformly in a reference frame comoving with the barycentre of the Solar system, but over the long term tick at the same rate as TDT. TDT and TDB were defined in a series of resolutions at the same meeting of the International Astronomical Union.

It was soon realized that TDB was not well defined because it was not accompanied by a general relativistic metric and because the exact relationship between TDB and TDT had not been specified. Furthermore, because the length of the TDB second is determined by clocks on Earth (as opposed to the barycentric reference frame itself) it disagrees with the SI second that would be determined by a clock at rest in the frame. As a result, in 1991 the IAU refined the notions of timescales by creating Barycentric Coordinate Time (TCB) and Geocentric Coordinate Time (TCG). TCB is a replacement for TDB, and TCG is its equivalent for use in near-Earth space. TDT was also renamed to Terrestrial Time (TT), because there is nothing dynamical about it.


TDB is the direct successor of Ephemeris Time in that the values of physical constants, notably the Gaussian gravitational constant, match the traditional values from pre-relativistic days.

Despite IAU recommendations that TCB be used for all further calculations of solar system ephemerides, as of 2002 TDB and Ephemeris Time continue to be used, the latter by the producer of the important DE200 ephemeris and its successors at the Jet Propulsion Laboratory. This somewhat controversial approach is taken because the timescale is fitted to observed data for the planets, and to a lesser extent some of their satellites. To adopt TDB or TCB would be to force a timestream based on terrestrial clocks, albeit "corrected" for (some) general relativistic effects, on a data set with which it might not be quite compatible. That said, the differences between Ephemeris Time and TDB appear to be immeasurably small as of 2005.

Nevertheless, as greater accuracy is attained with International Atomic Time and Ephemeris Time differences may appear; thus it seems worthwhile to retain the two timestreams, Ephemeris Time and TDB or TCB, in hopes that we can learn from any measured differences. For practical purposes the only difference between TDB and TCB is that TCB ticks faster.

External links

* [ Explanation of the technical difference between ephemeris time and TDB as currently defined.]
* [ United States Naval Observatory Circular 179 : The IAU Resolutions on Astronomical Reference Systems, Time Scales, and Earth Rotation Models Explanation and Implementation]

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Barycentric Dynamical Time — Dieser Artikel wurde aufgrund von inhaltlichen Mängeln auf der Qualitätssicherungsseite des Portals Physik eingetragen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Physik auf ein akzeptables Niveau zu bringen. Dabei werden… …   Deutsch Wikipedia

  • Barycentric Coordinate Time — (TCB) is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to orbits of planets, asteroids, comets, and interplanetary spacecraft in the Solar system. It is equivalent to the proper …   Wikipedia

  • Dynamical time scale — has two distinct meanings and usages, both related to astronomy: In one use, which occurs in stellar physics, the dynamical time scale is alternatively known as the freefall time scale, and is in general, the length of time over which changes in… …   Wikipedia

  • dynamical time —       specialized timescale used to describe the motion of objects in space.       As a practical matter, time can be defined as that coordinate which can most simply be related to the evolution of closed systems. Proper time is the time measured …   Universalium

  • Terrestrial Dynamical Time — Dieser Artikel wurde aufgrund von inhaltlichen Mängeln auf der Qualitätssicherungsseite des Portals Physik eingetragen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Physik auf ein akzeptables Niveau zu bringen. Dabei werden… …   Deutsch Wikipedia

  • Barycentric — can refer to:In astronomy, * Barycentric coordinates (astronomy) are coordinates defined by the common center of mass of two or more bodies * Barycentric Dynamical Time was a time standard in the Solar system * Barycentric Coordinate Time is a… …   Wikipedia

  • Time from NPL — Map showing the location of the Anthorn VLF transmitter within Cumbria …   Wikipedia

  • Time standard — A time standard is any officially recognized specification for measuring time: either the rate at which time passes; or points in time; or both. For example, the standard for civil time specifies both time intervals and time of day. A time scale… …   Wikipedia

  • Time dilation — This article is about a concept in physics. For the concept in sociology, see time displacement. In the theory of relativity, time dilation is an observed difference of elapsed time between two events as measured by observers either moving… …   Wikipedia

  • Time — This article is about the measurement. For the magazine, see Time (magazine). For other uses, see Time (disambiguation). The flow of sand in an hourglass can be used to keep track of elapsed time. It also concretely represents the present as… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”