Touchard polynomials

Touchard polynomials

The Touchard polynomials, named after Jacques Touchard, also called the exponential polynomials, comprise a polynomial sequence of binomial type defined by

:T_n(x)=sum_{k=1}^n S(n,k)x^k=sum_{k=1}^nleft{egin{matrix} n \ k end{matrix} ight}x^k

where "S"("n", "k") is a Stirling number of the second kind, i.e., it is the number of partitions of a set of size "n" into "k" disjoint non-empty subsets. (The second notation above, with { braces }, was introduced by Donald Knuth.) The value at 1 of the "n"th Touchard polynomial is the "n"th Bell number, i.e., the number of partitions of a set of size "n":

:T_n(1)=B_n.

If "X" is a random variable with a Poisson distribution with expected value λ, then its "n"th moment is E("X""n") = "T""n"(λ). Using this fact one can quickly prove that this polynomial sequence is of binomial type, i.e., it satisfies the sequence of identities:

:T_n(lambda+mu)=sum_{k=0}^n {n choose k} T_k(lambda) T_{n-k}(mu).

The Touchard polynomials make up the only polynomial sequence of binomial type in which the coefficient of the 1st-degree term of every polynomial is 1.

The Touchard polynomials satisfy the recursion

:T_{n+1}(x)=xsum_{k=0}^n{n choose k}T_k(x).

In case "x" = 1, this reduces to the recursion formula for the Bell numbers.

The generating function of the Touchard polynomials is

:sum_{n=0}^infty {T_n(x) over n!} t^n=e^{xleft(e^t-1 ight)}.


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Jacques Touchard — (1885 – 1968) est un mathématicien français. En 1953, il prouva que tout nombre parfait impair est de la forme 12k + 1 ou 36k + 9. Il a introduit les polynômes de Touchard (en), qui interviennent en combinatoire et en… …   Wikipédia en Français

  • Jacques Touchard — (1885 ndash; 1968) is a mathematician. In 1953, he proved that an odd perfect number must be of the form 12 k + 1 or 36 k + 9. In combinatorics and probability theory, he introduced the Touchard polynomials.Touchard s Catalan identityThe… …   Wikipedia

  • List of polynomial topics — This is a list of polynomial topics, by Wikipedia page. See also trigonometric polynomial, list of algebraic geometry topics.Basics*Polynomial *Coefficient *Monomial *Polynomial long division *Polynomial factorization *Rational function *Partial… …   Wikipedia

  • Polynomial sequence — In mathematics, a polynomial sequence is a sequence of polynomials indexed by the nonnegative integers 0, 1, 2, 3, ..., in which each index is equal to the degree of the corresponding polynomial. Examples * Monomials * Rising factorials * Falling …   Wikipedia

  • Binomial type — In mathematics, a polynomial sequence, i.e., a sequence of polynomials indexed by { 0, 1, 2, 3, ... } in which the index of each polynomial equals its degree, is said to be of binomial type if it satisfies the sequence of identities:p n(x+y)=sum… …   Wikipedia

  • Nombre de Stirling — En mathématiques, les nombres de Stirling apparaissent dans plusieurs problèmes combinatoires. Ils tirent leur nom de James Stirling, qui les a introduits au XVIIIe siècle. Il en existe deux sortes, nommés les nombres de Stirling de première …   Wikipédia en Français

  • Stirling number — In mathematics, Stirling numbers arise in a variety of combinatorics problems. They are named after James Stirling, who introduced them in the 18th century. Two different sets of numbers bear this name: the Stirling numbers of the first kind and… …   Wikipedia

  • List of exponential topics — This is a list of exponential topics, by Wikipedia page. See also list of logarithm topics. *Accelerating change *Artin Hasse exponential *Bacterial growth *Baker Campbell Hausdorff formula *Cell growth *Barometric formula *Basic infection number …   Wikipedia

  • List of mathematics articles (T) — NOTOC T T duality T group T group (mathematics) T integration T norm T norm fuzzy logics T schema T square (fractal) T symmetry T table T theory T.C. Mits T1 space Table of bases Table of Clebsch Gordan coefficients Table of divisors Table of Lie …   Wikipedia

  • Ménage problem — A table with ten place settings. According to the solution to the ménage problem, there are 3120 different ways in which five couples can choose seats at this table in such a way that men and women alternate and do not sit next to their partners …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”