- Petersson inner product
In
mathematics the Petersson inner product is aninner product defined on the space of entiremodular form s. It was introduced by the German mathematicianHans Petersson .Definition
Let mathbb{M}_k be the space of entire modular forms of weight k and mathbb{S}_k the space of
cusp form s.The mapping langle cdot , cdot angle : mathbb{M}_k imes mathbb{S}_k ightarrow mathbb{C},
:langle f , g angle := int_mathrm{F} f( au) overline{g( au)}
(operatorname{Im} au)^k d u ( au)
is called Petersson inner product, where
:mathrm{F} = left{ au in mathrm{H} : left| operatorname{Re} au ight| leq frac{1}{2}, left| au ight| geq 1 ight}
is a fundamental region of the
modular group Gamma and for au = x + iy:d u( au) = y^{-2}dxdy
is the hyperbolic volume form.
Properties
The integral is
absolutely convergent and the Petersson inner product is apositive definite Hermite form .For the
Hecke operator s T_n we have::langle T_n f , g angle = langle f , T_n g angle
This can be used to show that the space of cusp forms has an orthonormal basis consisting of simultaneous
eigenfunction s for the Hecke operators and theFourier coefficients of these forms are all real.References
* T.M. Apostol, "Modular Functions and Dirichlet Series in Number Theory", Springer Verlag Berlin Heidelberg New York 1990, ISBN 3-540-97127-0
* M. Koecher, A. Krieg, "Elliptische Funktionen und Modulformen", Springer Verlag Berlin Heidelberg New York 1998, ISBN 3-540-63744-3
* S. Lang, "Introduction to Modular Forms", Springer Verlag Berlin Heidelberg New York 2001, ISBN 3-540-07833-9
Wikimedia Foundation. 2010.