Fransén-Robinson constant

Fransén-Robinson constant

The Fransén-Robinson constant, sometimes denoted "F", is the mathematical constant that represents the area between the graph of the reciprocal Gamma function, 1/Gamma(x), and the positive "x" axis. That is,

:F = int_{0}^infty frac{1}{Gamma(x)}, dx.

The Fransén-Robinson constant has numerical value "F" = 2.8077702420285... OEIS|id=A058655, with the continued fraction representation [2; 1, 4, 4, 1, 18, 5, 1, 3, 4, 1, 5, 3, 6, ...] OEIS|id=A046943. Its proximity to Euler's number "e" = 2.71828... follows from the fact that the integral can be approximated by the sum

:sum_{n=1}^infty frac{1}{Gamma(n)} = sum_{n=0}^infty frac{1}{n!},

the standard series for "e". The difference is given by

:F = e + int_0^infty frac{e^{-x{pi^2 + (log x)^2}, dx.

and also by

:F = e + frac{1}{pi} int_{-pi/2}^{pi/2} e^{pi an heta} e^{-e^{pi an heta, d heta.

The Fransén-Robinson constant can also be expressed using the Mittag-Leffler function as the limit

:F = lim_{alpha o 0} alpha E_{alpha, 0}(1).

It is however unknown whether "F" can be expressed in closed form in terms of other known constants.

A fair amount of effort has been made to calculate the numerical value of the Fransén-Robinson constant with high accuracy. The value was computed to 36 decimal places by H. P. Robinson using 11-point Newton–Cotes quadrature, with 65 digits by A. Fransén using Euler–Maclaurin summation, and with 80 digits by Fransén and S. Wrigge using Taylor series and other methods. William A. Johnson computed 300 digits, and Pascal Sebah was able to compute 600 digits using Clenshaw–Curtis integration.

References

* Steve Finch, [http://www.mathsoft.com/mathsoft_resources/mathsoft_constants/Number_Theory_Constants/2030.asp Fransén–Robinson Constant]
*
*
* [http://pi.lacim.uqam.ca/piDATA/fransen.txt The value of the Fransén-Robinson constant to 300 decimal places]


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Mathematical constant — A mathematical constant is a special number, usually a real number, that is significantly interesting in some way .[1] Constants arise in many different areas of mathematics, with constants such as e and π occurring in such diverse contexts as… …   Wikipedia

  • Particular values of the Gamma function — The Gamma function is an important special function in mathematics. Its particular values can be expressed in closed form for integer and half integer arguments, but no simple expressions are known for the values at rational points in… …   Wikipedia

  • List of mathematics articles (F) — NOTOC F F₄ F algebra F coalgebra F distribution F divergence Fσ set F space F test F theory F. and M. Riesz theorem F1 Score Faà di Bruno s formula Face (geometry) Face configuration Face diagonal Facet (mathematics) Facetting… …   Wikipedia

  • Reciprocal Gamma function — In mathematics, the reciprocal Gamma function is the function:f(z) = frac{1}{Gamma(z)},where Gamma(z) denotes the Gamma function. Since the Gamma function is meromorphic and nonzero everywhere in the complex plane, its reciprocal is an entire… …   Wikipedia

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Liste mathematischer Konstanten — Eine mathematische Konstante ist eine fest definierte spezielle reelle oder komplexe Zahl, die sich auf natürliche Weise in der Mathematik ergibt. Anders als physikalische Konstanten werden mathematische Konstanten unabhängig von jedem… …   Deutsch Wikipedia

  • Mathematische Konstanten — Eine mathematische Konstante ist eine fest definierte spezielle reelle oder komplexe Zahl, die sich auf natürliche Weise in der Mathematik ergibt. Anders als physikalische Konstanten werden mathematische Konstanten unabhängig von jedem… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”