Thom conjecture

Thom conjecture

In mathematics, a smooth algebraic curve C in the complex projective plane, of degree d, has genus given by the formula

:g = (d-1)(d-2)/2.

The Thom conjecture, named after the 20th century mathematician René Thom, states that if Sigma is any smoothly embedded connected curve representing the same class in homology as C, then the genus g of Sigma satisfies

:g geq (d-1)(d-2)/2.

In particular, "C" is known as a "genus minimizing representative" of its homology class. There are proofs for this conjecture in certain cases such as when Sigma has nonnegative self intersection number, and assuming this number is nonnegative, this generalizes to Kähler manifolds (an example being the complex projective plane). It was first proved by Kronheimer-Mrowka and Morgan-Szabó-Taubes in October 1994, using the then-new Seiberg-Witten invariants.

There is at least one generalization of this conjecture, known as the symplectic Thom conjecture (which is now a theorem, as proved for example by Peter Ozsváth and Zoltán Szabó [Ozsváth and Szabó's paper, arXiv|archive=math.DG|id=9811087] ). It states that a symplectic surface of a symplectic 4-manifold is genus minimizing within its homology class. This would imply the previous result because algebraic curves (complex dimension 1, real dimension 2) are symplectic surfaces within the complex projective plane, which is a symplectic 4-manifold.

ee also

*Adjunction formula (algebraic geometry)

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Conjecture de Milnor (théorie des nœuds) —  Pour la conjecture de Milnor en K théorie algébrique (en), voir Conjecture de Milnor.  En théorie des nœuds, la conjecture de Milnor affirme que le 4 genre  …   Wikipédia en Français

  • René Thom — Infobox Scientist name=René Thom caption=René Thom birth date = birth date|1923|09|02 birth place= Montbéliard, France alma mater= University of Paris doctoral advisor= Henri Cartan death date = death date and age|2002|10|25|1923|09|02 field =… …   Wikipedia

  • Milnor conjecture (topology) — For Milnor s conjecture about K theory, see Milnor conjecture. In knot theory, the Milnor conjecture says that the slice genus of the (p,q) torus knot is (p − 1)(q − 1) / 2. It is in a similar vein to the Thom conjecture. It was first proved by… …   Wikipedia

  • Gradient conjecture — In mathematics, the gradient conjecture, due to René Thom, was proved in 2000 by K. Kurdyka, T. Mostowski and A. Parusinski. It states that given an analytic function f in R n and a trajectory x ( t ) of the gradient vector field of f having a… …   Wikipedia

  • List of mathematics articles (T) — NOTOC T T duality T group T group (mathematics) T integration T norm T norm fuzzy logics T schema T square (fractal) T symmetry T table T theory T.C. Mits T1 space Table of bases Table of Clebsch Gordan coefficients Table of divisors Table of Lie …   Wikipedia

  • John Morgan (Mathematiker) — John Willard Morgan (* 21. März 1946 in Philadelphia) ist ein US amerikanischer Mathematiker, der sich mit Topologie und algebraischer Geometrie beschäftigt. Morgan studierte an der Rice University, wo er 1969 seinen Bachelor Abschluss machte und …   Deutsch Wikipedia

  • John Morgan (mathematician) — John Willard Morgan is an American mathematician, well known for his contributions to topology and geometry. He is currently Professor and Chair of the Mathematics Department at Columbia University. LifeHe received his B.A. in 1968 and Ph.D. in… …   Wikipedia

  • Peter B. Kronheimer — Nationality  United Kingdom Fields …   Wikipedia

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • List of important publications in mathematics — One of the oldest surviving fragments of Euclid s Elements, found at Oxyrhynchus and dated to circa AD 100. The diagram accompanies Book II, Proposition 5.[1] This is a list of important publications in mathematics, organized by field. Some… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”