- Mazur–Ulam theorem
-
In mathematics, the Mazur–Ulam theorem states that if V and W are normed spaces over R and the mapping
is a surjective isometry, then f is affine.
References
- Richard J. Fleming; James E. Jamison (2003). Isometries on Banach Spaces: Function Spaces. CRC Press. p. 6. ISBN 1584880406.
- Stanisław Mazur; Stanislaw Ulam (1932). "Sur les transformationes isométriques d’espaces vectoriels normés". C. R. Acad. Sci. Paris 194: 946–948.
External links
This mathematical analysis–related article is a stub. You can help Wikipedia by expanding it.