- Ketogenesis
Ketogenesis is the process by which
ketone bodies are produced as a result of fatty acid breakdown.Production
Ketone bodies are produced mainly in the
mitochondria ofliver cells. Its synthesis occurs in response to lowcarbohydrate levels in the blood, and after exhaustion of cellular carbohydrate stores, such asglycogen . The production of ketone bodies is then initiated to make available energy that is stored asfatty acid s. Fatty acids are enzymatically broken down inβ-oxidation to formacetyl-CoA . Normally, acetyl-CoA is further oxidized and its energy transferred as electrons toNADH , FADH2, andGTP in thecitric acid cycle (TCA cycle). However, if the amounts of acetyl-CoA generated in fatty-acid β-oxidation challenge the processing capacity of the TCA cycle or if activity in the TCA cycle is low due to low amounts of intermediates such asoxaloacetate , acetyl-CoA is then used instead in biosynthesis of ketone bodies via acetoacyl-CoA and β-hydroxy-β-methylglutaryl-CoA (HMG-CoA ).Besides its role in the synthesis of ketone bodies, HMG-CoA is also an intermediate in the synthesis of
cholesterol .Types of ketone bodies
The three ketone bodies are:
*Acetoacetate ; if not oxidized to form usable energy, it is the source of the two other ketone bodies below.
*Acetone ; is not used as an energy source, but is instead exhaled or excreted as waste.
* β-hydroxybutyrate; it is not technically aketone according toIUPAC nomenclature.Each of these compounds is synthesized from acetyl-CoA molecules.
Regulation
Ketogenesis may or may not occur, depending on levels of available carbohydrates in the cell or body. This is closely related to the paths of acetyl-CoA:
* When the body has ample carbohydrates available as energy source,glucose is completely oxidized to CO2; acetyl-CoA is formed as an intermediate in this process, first entering thecitric acid cycle followed by complete conversion of its chemical energy to ATP in oxidative phosporylation.
* When the body has excess carbohydrates available, some glucose is fully metabolized, and some of it is stored by using acetyl-CoA to createfatty acids . (CoA is also recycled here.)
* When the body has no free carbohydrates available, fat must be broken down into acetyl-CoA in order to get energy. Acetyl-CoA is not being recycled through the citric acid cycle because the citric acid cycle intermediates (mainly oxaloacetate) have been depleted to feed thegluconeogenesis pathway, and the resulting accumulation of acetyl-CoA activates ketogenesis.Pathology
Ketone bodies are created at moderate levels in everyone's bodies, such as during sleep and other times when no carbohydrates are available. However, when ketogenesis is happening at higher than normal levels, the body is said to be in a state of
ketosis . It is unknown whether ketosis has negative long-term effects or not.Both acetoacetate and beta-hydroxybutyrate are acidic, and, if levels of these ketone bodies are too high, the
pH of the blood drops, resulting inketoacidosis . This is very rare, and, in general, happens only in untreated Type Idiabetes (seediabetic ketoacidosis ) and inalcoholic s after binge drinking and subsequent starvation (seealcoholic ketoacidosis ).ee also
*
ketone bodies
*fatty acid metabolism
*Ketosis External links
* [http://www.unisanet.unisa.edu.au/08366/h&p2fat.htm Fat metabolism] at
University of South Australia
* James Baggott. (1998) [http://www-medlib.med.utah.edu/NetBiochem/FattyAcids/10_1.html Synthesis and Utilization of Ketone Bodies] atUniversity of Utah Retrieved 23 May 2005.
*
* Richard A. Paselk. (2001) [http://www.humboldt.edu/~rap1/C431.F01/C431Notes/C431n07Dec.htm Fat Metabolism 2: Ketone Bodies] atHumboldt State University Retrieved 23 May 2005.
Wikimedia Foundation. 2010.