Composition series

Composition series

In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a module, into simple pieces. The need for considering composition series in the context of modules arises from the fact that many naturally occurring modules are not semisimple, hence cannot be decomposed into a direct sum of simple modules. A composition series of a module M is a finite increasing filtration of M by submodules such that the successive quotients are simple and serves as a replacement of the direct sum decomposition of M into its simple constituents.

A composition series may not even exist, and when it does, it need not be unique. Nevertheless, a group of results known under the general name Jordan-Hölder theorem asserts that whenever composition series exist, the isomorphism classes of simple pieces (although, perhaps, not their location in the composition series in question) and their multiplicities are uniquely determined. Composition series may thus be used to define invariants of finite groups and Artinian modules.

A related but distinct concept is a chief series: a composition series is a maximal subnormal series, while a chief series is a maximal normal series.

Contents

For groups

If a group G has a normal subgroup N, then the factor group G/N may be formed, and some aspects of the study of the structure of G may be broken down by studying the "smaller" groups G/N and N. If G has no normal subgroup that is different from G and from the trivial group, then G is a simple group. Otherwise, the question naturally arises as to whether G can be reduced to simple "pieces", and if so, are there any unique features of the way this can be done?

More formally, a composition series of a group G is a subnormal series

1 = H_0\triangleleft H_1\triangleleft \cdots \triangleleft H_n = G,

with strict inclusions, such that each Hi is a maximal normal subgroup of Hi+1. Equivalently, a composition series is a subnormal series such that each factor group Hi+1 / Hi is simple. The factor groups are called composition factors.

A subnormal series is a composition series if and only if it is of maximal length. That is, there are no additional subgroups which can be "inserted" into a composition series. The length n of the series is called the composition length.

If a composition series exists for a group G, then any subnormal series of G can be refined to a composition series, informally, by inserting subgroups into the series up to maximality. Every finite group has a composition series, but not every infinite group has one. For example, the infinite cyclic group has no composition series.

Uniqueness: Jordan–Hölder theorem

A group may have more than one composition series. However, the Jordan–Hölder theorem (named after Camille Jordan and Otto Hölder) states that any two composition series of a given group are equivalent. That is, they have the same composition length and the same composition factors, up to permutation and isomorphism. This theorem can be proved using the Schreier refinement theorem. The Jordan–Hölder theorem is also true for transfinite ascending composition series, but not transfinite descending composition series (Birkhoff 1934).

Transfinite ascending composition series are related to the concept of hypertranssimplicity (Sharipov 2009). A group is called hypertranssimple if it has no ascending subnormal series (neither finite nor transfinite ) other than the trivial series of the length one.

Example

For a cyclic group of order n, composition series correspond to ordered prime factorizations of n, and in fact yields a proof of the fundamental theorem of arithmetic.

For example, the cyclic group C12 has

 C_1\triangleleft C_2\triangleleft C_6 \triangleleft C_{12},
 C_1\triangleleft C_2\triangleleft C_4\triangleleft C_{12},
 C_1\triangleleft C_3\triangleleft C_6 \triangleleft C_{12}

as different composition series. The sequences of composition factors obtained in the respective cases are

 C_2,C_3,C_2\
 C_2,C_2,C_3\ and
 C_3,C_2,C_2.\

For modules

Given a ring R and an R-module M, a composition series for M is a series of submodules

\{0\} = J_0 \subset \cdots \subset J_n = M

where all inclusions are strict and Jk is a maximal submodule of Jk+1 for each k. As for groups, if M has a composition series at all, then any finite strictly increasing series of submodules of M may be refined to a composition series, and any two composition series for M are equivalent. In that case, the (simple) quotient modules Jk+1/Jk are known as the composition factors of M, and the number of occurrences of each isomorphism type of simple R-module as a composition factor does not depend on the choice of composition series. If R is an Artinian ring, then every finitely generated R-module has a composition series by the Hopkins-Levitzki theorem. In particular, for any field K, any finite-dimensional module for a finite-dimensional algebra over K has a composition series, unique up to equivalence.

A middle ground between modules and groups is the concept of groups with a set of operators. Restricting attention to subgroups invariant under the action of the operators, nearly identical proofs establish the corresponding results, such as the Jordan-Hölder theorem. An important case occurs where the set of operators is the set of inner automorphisms, then the corresponding idea of a composition series is instead a chief series. A unified approach to both groups and modules can be followed, simplifying some of the exposition (Isaacs 1994, Ch. 10).

For objects in an abelian category

A composition series of an object A in an abelian category is a sequence of subobjects

A=X_0\supsetneq X_1\supsetneq \dots \supsetneq X_n=0

such that each quotient object Xi /Xi + 1 is simple (for 0 ≤ i < n). If A has a composition series, the integer n only depends on A and is called the length of A.[1]

Notes

  1. ^ Kashiwara & Schapira 2006, exercise 8.20

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • composition series — Math. a normal series of subgroups in which no additional subgroups can be inserted. Also called principal series. * * * …   Universalium

  • composition series — Math. a normal series of subgroups in which no additional subgroups can be inserted. Also called principal series …   Useful english dictionary

  • Composition for Four Instruments — (1948) is an early serial music composition written by American composer Milton Babbitt. It is Babbitt’s first published ensemble work, following shortly after his Three Compositions for Piano (1947). In both these pieces, Babbitt expands upon… …   Wikipedia

  • Series One, Episode Six (Island at War) — Series One, Episode Six is the sixth and final episode of the first series of the television drama Island at War .Plot summaryJune is singing for a mixed crowd at the 50/50 Club which turns ugly when Captain Muller switches places with her… …   Wikipedia

  • Composition ring — In mathematics, a composition ring, introduced in (Adler 1962), is a commutative ring (R, 0, +, −, ·), possibly without an identity 1 (see non unital ring), together with an operation such that, for any three elements one has …   Wikipedia

  • Composition (argumentation) — Pour les articles homonymes, voir Composition. Une composition est un exercice d argumentation pratiqué dans les établissements scolaires français, que ce soit en lycée (dans les séries préparant au bac général), en classes prépa, en université… …   Wikipédia en Français

  • Series-parallel graph — In graph theory, series parallel graphs are graphs with two distinguished vertices called terminals , formed recursively by two simple composition operations. They can be used to model series and parallel electric circuits.Definition and… …   Wikipedia

  • series — 1. A succession of similar objects following one another in space or time. 2. In chemistry, a group of substances, either elements or compounds, having similar properties or differing from each other in composition by a constant ratio. [L. fr.… …   Medical dictionary

  • series — noun (plural series) Usage: often attributive Etymology: Latin, from serere to join, link together; akin to Greek eirein to string together, hormos chain, necklace, and perhaps to Latin sort , sors lot Date: 1611 1. a. a number of things or… …   New Collegiate Dictionary

  • composition — n. 1 a the act of putting together; formation or construction. b something so composed; a mixture. c the constitution of such a mixture; the nature of its ingredients (the composition is two parts oil to one part vinegar). 2 a a literary or… …   Useful english dictionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”