Selberg zeta function

Selberg zeta function

The Selberg zeta-function was introduced by Atle Selberg in the 1950s. It is analogous to the famous Riemann zeta function :zeta(s) = prod_{pinmathbb{P frac{1}{1-p^{-s where mathbb{P} is the set of prime numbers. The Selberg zeta-function uses the lengths of simple closed geodesics instead of the primes numbers.

For any hyperbolic surface of finite area there is an associated Selberg zeta-function; this function is a meromorphic function defined in the complex plane. The zeta function is defined in terms of the closed geodesics of the surface.

The zeros and poles of the Selberg zeta-function, "Z"("s"), can be described in terms of spectral data of the surface.

The zeros are at the following points:
# For every cusp form with eigenvalue s_0(1-s_0) there exists a zero at the point s_0. The order of the zero equals the dimension of the corresponding eigenspace. (A cusp form is an eigenfunction to the Laplace-Beltrami operator which has Fourier expansion with zero constant term.)
# The zeta-function also has a zero at every pole of the determinant of the scattering matrix, phi(s) . The order of the zero equals the order of the corresponding pole of the scattering matrix.

The zeta-function also has poles at 1/2 - mathbb{N} , and can have zeros or poles at the points - mathbb{N} .

Selberg zeta-function for the modular group

For the case where the surface is Gamma ackslash mathbb{H}^2 , where Gamma is the modular group, the Selberg zeta-function is of special interest. For this special case the Selberg zeta-function is intimately connected to the Riemann zeta-function.

In this case the scattering matrix is given by:: varphi(s) = pi^{1/2} frac{ Gamma(s-1/2) zeta(2s-1) }{ Gamma(s) zeta(2s) }.

In particular, we see that if the Riemann zeta-function has a zero at s_0, then the scattering matrix has a pole at s_0/2, and hence the Selberg zeta-function has a zero at s_0/2.

Bibliography

* Hejhal, D. A. The Selberg trace formula for PSL(2,R). Vol. 2, Springer-Verlag, Berlin, 1983.
* Iwaniec, H. Spectral methods of automorphic forms, American Mathematical Society, second edition, 2002.
* Venkov, A. B. Spectral theory of automorphic functions. Proc. Steklov. Inst. Math, 1982.


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Zeta function — A zeta function is a function which is composed of an infinite sum of powers, that is, which may be written as a Dirichlet series::zeta(s) = sum {k=1}^{infty}f(k)^s Examples There are a number of mathematical functions with the name zeta function …   Wikipedia

  • Ihara zeta function — In mathematics, the Ihara zeta function closely resembles the Selberg zeta function, and is used to relate the spectrum of the adjacency matrix of a graph G = (V, E) to its Euler characteristic. The Ihara zeta function was first defined by… …   Wikipedia

  • Riemann zeta function — ζ(s) in the complex plane. The color of a point s encodes the value of ζ(s): dark colors denote values close to zero and hue encodes the value s argument. The white spot at s = 1 is the pole of the zeta function; the black spots on the… …   Wikipedia

  • Dedekind zeta function — In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function which is obtained by specializing to the case where K is the rational numbers Q. In particular,… …   Wikipedia

  • Selberg trace formula — In mathematics, the Selberg trace formula is a central result, or area of research, in non commutative harmonic analysis. It provides an expression for the trace, in a sense suitably generalising that of the trace of a matrix, for suitable… …   Wikipedia

  • Selberg, Atle — ▪ 2008       Norwegian born American mathematician born June 14, 1917, Langesund, Nor. died Aug. 6, 2007 , Princeton, N.J. was awarded the Fields Medal in 1950 for his work in number theory, and in 1986 he shared (with Samuel Eilenberg) the Wolf… …   Universalium

  • Atle Selberg — (June 14, 1917 ndash; August 6, 2007) was a Norwegian mathematician known for his work in analytic number theory, and in the theory of automorphic forms, in particular bringing them into relation with spectral theory. Early years Selberg was born …   Wikipedia

  • Formule Des Traces De Selberg — En mathématiques, la formule des traces de Selberg est un résultat central en analyse harmonique non commutative. Elle fournit une expression pour la trace de certains opérateurs intégraux ou différentiels agissant sur des espaces de fonctions… …   Wikipédia en Français

  • Formule des traces de selberg — En mathématiques, la formule des traces de Selberg est un résultat central en analyse harmonique non commutative. Elle fournit une expression pour la trace de certains opérateurs intégraux ou différentiels agissant sur des espaces de fonctions… …   Wikipédia en Français

  • Formule des traces de Selberg — En mathématiques, la formule des traces de Selberg est un résultat central en analyse harmonique non commutative. Elle fournit une expression pour la trace de certains opérateurs intégraux ou différentiels agissant sur des espaces de fonctions… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”