Non-thermal microwave effect

Non-thermal microwave effect

Non-thermal microwave effects have been posited in order to explain unusual observations in microwave chemistry. As the name suggests, the effects are supposed not to require the transfer of microwave energy into thermal energy. Instead, the microwave energy itself directly couples to energy modes within the molecule or lattice. Non-thermal effects in liquids are almost certainly non-existent,[1][2] as the time for energy redistribution between molecules in a liquid is much less than the period of a microwave oscillation. A recent review has illustrated this in application to organic chemistry, though clearly supports the existence of non-thermal effects.[3] It has been shown that such non-thermal effects exist in the reaction of O + HCl(DCl)->OH(OD)+Cl in the gas phase and the authors suggest that some mechanisms may also be present in the condensed phase.[4] Non-thermal effects in solids are still part of an ongoing debate. It is likely that, through focusing of electric fields at particle interfaces, microwaves cause plasma formation and enhance diffusion in solids[5] via second-order effects.[6][7][8] As a result, they may enhance solid-state sintering processes. Debates are still raging (January 2006) about non-thermal effects of microwaves that have been reported in solid-state phase transitions.[9]

References

  1. ^ Stuerga, D.; Gaillard, P. Journal of Microwave Power and Electromagnetic Energy, 1996, 31, 101-113.
  2. ^ Stuerga, D.; Gaillard, P. Journal of Microwave Power and Electromagnetic Energy, 1996, 31, 87-99.
  3. ^ Microwaves in organic synthesis. Thermal and non-thermal microwave effects, Antonio de la Hoz, Angel Diaz-Ortiz, Andres Moreno, Chem. Soc. Rev., 2005, 164-178.
  4. ^ Strong Acceleration of Chemical Reactions Occurring Through the Effects of Rotational Excitation on Collisional Geometry, Adolf Miklavc, Chem. Phys. Chem., 2001, 552-555.
  5. ^ Whittaker, A.G., Chem. Mater., 17 (13), 3426 -3432, 2005.
  6. ^ Booske, J. H.; Cooper, R. F.; Dobson, I. Journal of Materials Research 1992, 7, 495-501.
  7. ^ Booske, J. H.; Cooper, R. F.; Freeman, S. A. Materials Research Innovations 1997, 1, 77-84.
  8. ^ Freeman, S. A.; Booske, J. H.; Cooper, R. F. J. Appl. Phys., 1998, 83, 5761.
  9. ^ Robb, G.; Harrison, A.; Whittaker, A. G. Phys. Chem. Comm., 2002, 135-137

Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Microwave effect — The phrase microwave effect is a term that is applied to a range of observations in microwave chemistry. There are two general classes of microwave effects: Specific microwave effects. Non thermal microwave effects. A recent review has proposed… …   Wikipedia

  • Microwave chemistry — is the science of applying microwave irradiation to chemical reactions.[1][2][3][4] Microwaves act as high frequency electric fields and will generally heat any material containing mobile electric charges, such as polar molecules in a solvent or… …   Wikipedia

  • Microwave oven — A modern microwave oven …   Wikipedia

  • Microwave — This article is about the electromagnetic wave. For the cooking appliance, see Microwave oven. For other uses, see Microwaves (disambiguation). A microwave telecommunications tower on Wrights Hill in Wellington, New Zealand Microwaves, a subset… …   Wikipedia

  • Non-invasive RF cancer treatment — is an experimental method of cancer treatment that employs a combination of either gold or carbon nanoparticles and radio waves to heat and destroy cancer cells while ignoring healthy cells.Radio waves are, for the most part,weasel inline… …   Wikipedia

  • Microwave auditory effect — The microwave auditory effect, also known as the microwave hearing effect or the Frey effect, consists of audible clicks induced by pulsed/modulated microwave frequencies. The clicks are generated directly inside the human head without the need… …   Wikipedia

  • Timeline of cosmic microwave background astronomy — Timeline of cosmic microwave background astronomyThermal (non microwave background) temperature predictions* 1896 Charles Edouard Guillaume estimates the radiation of the stars to be 5.6K. [Guillaume, C. E., 1896, La Nature 24, series 2, p. 234,… …   Wikipedia

  • Cosmic microwave background radiation — CMB and Cosmic background radiation redirect here. For other uses see CMB (disambiguation) and Cosmic background (disambiguation). Physical cosmology …   Wikipedia

  • Wilkinson Microwave Anisotropy Probe — WMAP redirects here. WMAP may also refer to either radio station WXNC or WGSP FM. Wilkinson Microwave Anisotropy Probe General information NSSDC ID 2001 027A …   Wikipedia

  • Skin effect — Skin depth redirects here. For the depth (layers) of biological/organic skin, see skin. Skin effect is the tendency of an alternating electric current (AC) to distribute itself within a conductor with the current density being largest near the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”