- Pneumatic cylinder
Pneumatic cylinders (sometimes known as air cylinders) are
mechanical device s which produceforce , often in combination with movement, and are powered bycompressed gas (typically air).To perform their function, pneumatic cylinders impart a
force by converting thepotential energy ofcompressed gas intokinetic energy . This is achieved by the compressed gas being able to expand, without external energy input, which itself occurs due to the pressure gradient established by the compressed gas being at a greaterpressure than theatmospheric pressure . This air expansion forces apiston to move in the desired direction.Operation
General
Once actuated, compressed air enters into the tube at one end of the piston and, hence, imparts force on the piston. Consequently, the piston becomes displaced (moved) by the compressed air expanding in an attempt to reach
atmospheric pressure .pecialized functions
Depending upon the design of the system, pneumatic cylinders can operate in a variety of ways. Examples include having the ability to perform multiple strokes without the need for intermediate intervention, to perform a full stroke with intermediate stopping points, to be adjusted so as to control the amount of extension and/or retraction of the piston rod once actuated.
Fail safe mechanisms
Pneumatic system s are often found in settings where even rare and briefsystem failure is unacceptable. In such situations locks can sometimes serve as a safety mechanism in case of loss ofair supply (or itspressure falling) and, thus, or abate any damage arising in such a situation.Types
Although pneumatic cylinders will vary in appearance, size and function, they generally fall into one of the specific categories shown below. However there are also numerous other types of pneumatic cylinder available, many of which are designed to fulfill specific and specialised functions.
ingle acting cylinders
Single acting cylinders (SAC) use the force imparted by air to move in one direction (usually out), and a spring to return to the "home" position
Double acting cylinders
Double Acting Cylinders (DAC) use the force of air to move in both extend and retract strokes. They have two
port s to allow air in, one for outstroke and one for instroke.Other types
Although SACs and DACs are the most common types of pneumatic cylinder, the following types are not particularly rare:
*Rotary air cylinders: actuators that use air to impart a rotary motion
*Rodless air cylinders: actuators that use a mechanical or magnetic coupling to impart force, typically to a table or other body that moves along the length of the cylinder body, but does not extend beyond it.izes
Air cylinders are available in a variety of sizes and can typically range from a small 2.5mm air cylinder, which might be used for picking up a small transistor or other electronic component, to 400mm diameter air cylinders which would impart enough force to lift a car. Some pneumatic cylinders reach 1000mm in diameter, and are used in place of hydraulic cylinders for special circumstances where leaking hydraulic oil could impose an extreme hazard.
Pressure, radius, area and force relationships
Although the diameter of the piston and the force exerted by a cylinder are related, they are not
directly proportional to one another. Additionally, the typical mathematical relationship between the two assumes that the air supply does not become saturated. Due to the effectivecross sectional area reduced by the area of the piston rod, the instroke force is less than the outstroke force when both are powered pneumatically and by same supply of compressed gas.The relationship, between force on outstroke, pressure and radius, is as follows::
Where:: represents the force exerted: represents the radius: represents the transcendental and irrational
constant , which is approximately equal to 3.14159.This is derived from the relationship, between force, pressure and effective "cross-sectional area", which is::
With the same symbolic notation of
variable s as above, but also represents the effective cross sectional area.On instroke, the same relationship between force exerted, pressure and "effective cross sectional area" applies as discussed above for outstroke. However, since the cross sectional area is less than the piston area the relationship between force, pressure and "radius" is different. The calculation isn't more complicated though, since the effective cross sectional area is merely that of the piston less that of the piston rod.
For instroke, therefore, the relationship between force exerted, pressure, radius of the piston, and radius of the piston rod, is as follows::
Where:: represents the force exerted: represents the radius of the piston: represents the radius of the piston rod: represents the transcendental and irrational
constant approximately equal to 3.14159.See also
*
Pneumatics
*Fluid power
*Fluid dynamics
*Pneumatic motor
*Hydraulics
*Riveting machines External links
Wikimedia Foundation. 2010.