- Van der Corput sequence
A van der Corput sequence is a
low-discrepancy sequence over theunit interval first published in1935 by the Dutch mathematician J. G. van der Corput. It is constructed by reversing the base "n" representation of the sequence ofnatural number s (1, 2, 3, …). For example, thedecimal van der Corput sequence begins::0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.01, 0.11, 0.21, 0.31, 0.41, 0.51, 0.61, 0.71, 0.81, 0.91, 0.02, 0.12, 0.22, 0.32, …
whereas the binary van der Corput sequence can be written as:
:0.12, 0.012, 0.112, 0.0012, 0.1012, 0.0112, 0.1112, 0.00012, 0.10012, 0.01012, 0.11012, 0.00112, 0.10112, 0.01112, 0.11112, …
or, equivalently, as:
:frac{1}{2}, frac{1}{4}, frac{3}{4}, frac{1}{8}, frac{5}{8}, frac{3}{8}, frac{7}{8}, frac{1}{16}, frac{9}{16}, frac{5}{16}, frac{13}{16}, frac{3}{16}, frac{11}{16}, frac{7}{16}, frac{15}{16}, ldots
The elements of the van der Corput sequence (in any base) form a
dense set in the unit interval: for any real number in [0, 1] there exists asubsequence of the van der Corput sequence that converges towards that number. They are also uniformly distributed over the unit interval.ee also
*
Constructions of low-discrepancy sequences References
* J. G. van der Corput, "Verteilungsfunktionen". Proc. Ned. Akad. v. Wet., 38:813–821, 1935
*External links
* [http://mathworld.wolfram.com/vanderCorputSequence.html van der Corput sequence] at
MathWorld
Wikimedia Foundation. 2010.