Centaur Technology

Centaur Technology

Centaur Technology is an x86 CPU design company, now a wholly owned subsidiary of VIA Technologies, a member of the Formosa Plastics Group, Taiwan's largest industrial conglomerate.

History

Centaur Technologies Inc. was founded in April 1995 by Glenn Henry, Terry Parks, Darius Gaskins, and Al Sato. The funding came from Integrated Device Technology, Inc (IDT). The business goal was to develop compatible x86 processors that were much less expensive than Intel processors and consumed much less power.

There were two fundamental elements of the plan. First, a unique design, developed from scratch, of an x86 processor core optimized differently than Intel's cores. Second, a unique management approach designed to achieve high productivity.

While founded by IDT, three different Centaur designs were shipped under the marketing name of WinChip. In September 1999, Centaur was purchased from IDT by VIA Technologies, a Taiwanese company. Since then, five designs have shipped with marketing name of VIA C3, quite a number of designs as the VIA C7 processor, and their latest 64-bit CPU, the VIA Nano.

Design methodology

While slower than x86 CPUs being sold by AMD and Intel, both in absolute terms and on a clock for clock basis, Centaur's chips are much smaller, cheaper to manufacture and consume less power. This makes them highly attractive in the embedded marketplace, and increasingly in the mobile sector as well.

There is a significant performance gap that exists between Centaur and competing x86 chips. Centaur design philosophy was always centered around "sufficient" performance for tasks, that its target market demands. Some of the design trade offs made by the design team are worthy of study, as they run contrary to accepted wisdom.

VIA Nano

* VIA Nano Isaiah (CN) is a combination of a number of firsts from Centaur, their first superscalar out-of-order CPU, their first 64-bit CPU from Centaur and their first processor designed from scratch.

* The development of the VIA Nano focused on radically improving the performance side of the performance-per-watt equation while still maintaining a similar TDP to the VIA C7.

VIA C7

* VIA C7 Esther (C5J) as an evolutionary step after VIA C3 Nehemiah+ (C5P), in which Centaur followed their traditional approach of balancing performance against a constrained transistor / power budget.

* The cornerstone of the VIA C3 series chips' design philosophy has been that even a relatively simple in-order scalar core can offer reasonable performance against a complex superscalar out-of-order core if supported by an efficient "front-end", i.e. prefetch, cache and branch prediction mechanisms.

* In the case of VIA C7, the design team have focused on further streamlining the "front-end" of the chip, i.e. cache size, associativity and throughput as well as the prefetch system. [cite web | author = Besedin, Dmitri | title = Detailed Platform Analysis in RightMark Memory Analyzer. Part 12: VIA C7/C7-M Processors| publisher = Digit-Life.com | url =http://www.digit-life.com/articles2/cpu/rmma-via-c7.html | accessdate = 2007-03-12] At the same time no significant changes to the execution core ("back-end") of the chip seem to have been made.

* The VIA C7 successfully further closes the gap in performance with AMD / Intel chips, since clock speed is not thermally constrained.

VIA C3

* Because memory performance is the limiting factor in many benchmarks, VIA processors implement large primary caches, large TLBs, and aggressive prefetching, among other enhancements. While these features are not unique to VIA, memory access optimization is one area where they have not dropped features to save die space. In fact, generous primary caches (128K) have always been a distinctive hallmark of Centaur designs.

* Generally, clock frequency is favored over increasing instructions per cycle. Complex features such as out-of-order instruction execution are deliberately not implemented, because they impact the ability to increase the clock rate, require a lot of extra die space and power, and have little impact on performance in several common application scenarios.

* The pipeline is arranged to provide one-clock execution of the heavily used register–memory and memory–register forms of x86 instructions. Several frequently used instructions require fewer pipeline clocks than on other x86 processors.

* Infrequently used x86 instructions are implemented in microcode and emulated. This saves die space and reduces power consumption. The impact upon the majority of real world application scenarios is minimized.

* These design principles are derivative from the original RISC advocates, who stated a smaller set of instructions, better optimized, would deliver faster overall CPU performance. The C3 design cannot be considered a RISC design because it uses the x86's CISC instruction set for compatibility.

Comparative die size

NOTE: Even the 180 nm Duron Morgan core (106 mm²) with a mere 64 K secondary cache, when shrunk down to a 130 nm process, would have still had a die size of 76 mm². The VIA x86 core is clearly the smallest and cheapest to produce. As can be seen in this table, almost four C7 cores could be manufactured for the same cost as a single core P4 Prescott on 90 nm process; this because it costs about the same amount to manufacture a given surface area for most types of chip - with just over a quarter of the surface area of a Prescott P4, the VIA C7 costs around a quarter as much to manufacture.

References

External links

* [http://www.centtech.com Home page]


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Centaur Technology — Rechtsform Tochterunternehmen von VIA Technologies Gründung 1995 Sitz …   Deutsch Wikipedia

  • Centaur Technology — Saltar a navegación, búsqueda Centaur Technology es una compañía estadounidense filial de la taiwanwesa VIA Technologies diseñadora de CPU tipo x86. Inicialmente perteneciente a IDT, fue fundada en 1995. Diseñó una serie de CPUs comercializada… …   Wikipedia Español

  • Centaur Technologies — Centaur Technology wurde 1995 als eine Tochterfirma von Integrated Device Technology (IDT) mit der damals revolutionierenden Idee gegründet, dass ein kleines Team von Mikroprozessor Ingenieuren einen preisgünstigen x86 Prozessor für den sub $1000 …   Deutsch Wikipedia

  • Centaur (disambiguation) — Centaur may refer to:* Centaur, a mythological creature * Centaur, a 20th century serif typeface based on Renaissance models * Centaur Technology, a CPU design company * Centaur (minor planet), a minor planet orbiting between Jupiter and Neptune… …   Wikipedia

  • Centaur — Zentaur (latein. Centaurus „Pferdemensch“) steht für: Zentaur (Sternbild), die Sternenkonstellation Centaurus des Südlichen Himmels Zentauren (Astronomie), eine Klasse von Asteroiden zwischen Jupiter und Neptun Kentaur steht für: Kentaur oder… …   Deutsch Wikipedia

  • Integrated Device Technology — Integrated Device Technology, Inc. Rechtsform Aktiengesellschaft Gründung …   Deutsch Wikipedia

  • Integrated Device Technology — IDT (nasdaq|IDTI) was founded in 1980 as a semiconductor vendor. Employing approximately 2500 people worldwide, headquartered in San Jose, California and operating a fab in Hillsboro, Oregon, the company both designs and fabricates semiconductor… …   Wikipedia

  • Integrated Device Technology — Год основания 1980 Расположение Сан Хосе (Калифорния), Калифорния, США Отрасль Интегральные схемы Продукция …   Википедия

  • Rise Technology — wurde 1993 als privatgeführtes Unternehmen gegründet. Ziel war die Produktion eines konkurrenzfähigen x86 Prozessors mit besonderen Stromsparmechanismen, besonders für Notebooks. Dies wurde 1998 mit dem Rise mP6 erreicht: Die CPU besaß ein… …   Deutsch Wikipedia

  • Integrated Device Technology — IDT (Integrated Device Technology, Inc) es una empresa estadounidense con sede en San Jose (California). Fundada en 1980 como vendedor de semiconductores, emplea cerca de 3.000 personas en el diseño y fabricación de componentes semiconductores.… …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”