Berezin integral

Berezin integral

In mathematical physics, a Berezin integral is a way to define integration for functions of Grassmann variables. It is not an integral in the Lebesgue sense; it is called integration for some analogue properties and since it is used in physics in a parallel manner to ordinary integration. The technique was invented by the physicist David John Candlin in 1956 [cite journal|journal= Nuovo Cimento | author= D.J. Candlin | volume =4 | title = On Sums over Trajactories for Systems With Fermi Statistics|year=1956|pages=224|doi= 10.1007/BF02745446] , but it is named after the Russian mathematician Felix Berezin, who included a treatment in his textbook [A. Berezin, "The Method of Second Quantization", Academic Press, (1966)] .

Definition

The "Berezin integral" is defined to be a linear functional int af( heta)+bg( heta) d heta = aint f( heta)d heta +bint g( heta)d heta

fulfilling the partial integration ruleint fracpartial{partial heta}f( heta)d heta = 0 ;.

These properties define the integral uniquely up to a multiplicative constant which we can set to 1 and translate into the rule

*int (a heta+b) d heta = a ;.

This is the most general function, because every homogeneous function of one Grassmann variable is either constant or linear.

Multiple Variables

Integration over multiple variables is defined by Fubini's theorem:int f_1( heta_1)ldots f_n( heta_n) d heta_1ldots d heta_n = int f_1( heta_1)d heta_1ldots int f_n( heta_n) d heta_n ;.

Note that the sign of the result depends on the order of integration.

Suppose now we want to do a substitution: heta_i= heta_i(xi_j)where as usual (ξj) implies dependence on all ξj. Moreover the function θi has to be an odd function, i.e. contains an odd number of ξj in each summand. The Jacobian is the usual matrixJ_{ij}=frac{partial heta_i}{partialxi_j} ;.

the substitution formula now reads asint f( heta_i)d heta = int f( heta_i(xi_j)) operatorname{det}(J_{ij})^{-1} dxi ;.

ubstitution formula

Consider now a mixture of even and odd variables, i.e. xa and θi. Again we assume a coordinate transformation as x_a=x_a(y_b, heta_j),,; xi_i=xi_i(y_b, heta_j);, where xa are even functions and θi are odd functions. We assume the functions xa and θi to be defined on an open set U in Rm. The functions xa map onto the open set U' in Rm.

The change of the integral will depend on the Jacobian J_{alphaeta}=frac{partial (x_a, heta_i)}{partial(y_b,xi_j)}. This matrix consists of 4 blocks J=egin{bmatrix}A&B\ C&D end{bmatrix}. A and D are even functions due to the derivation properties, B and C are odd functions. A matrix of this block structure is called even matrix.

The transformation factor itself depends on the oriented Berezinian of the Jacobian. This is defined as:Ber_{+-} J_{alphaeta} = sgn, operatorname{det} A, operatorname{Ber} J_{alphaeta}

For further details see the article about the Berezinian.

The complete formula now reads as: int_U f(x_a, heta_i) d(x, heta) =int_{U'} f(x_a, heta_i) operatorname{Ber}_{+-}, frac{partial(x_a, heta_i)}{partial(y_b,xi_j)} d(y,xi)

Literature

* Theodore Voronov: "Geometric integration theory on Supermanifolds", Harwood Academic Publisher, ISBN 3-7186-5199-8

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Berezin transform — In mathematics mdash; specifically, in complex analysis mdash; the Berezin transform, named after Felix Alexandrovich Berezin, is an integral operator acting on functions defined on the open unit disk D of the complex plane C. Formally, for a… …   Wikipedia

  • Felix Berezin — Felix Alexandrovich Berezin ( ru. Феликс Александрович Березин) (25 April 1931 ndash; July 14 1980) was a Soviet Russian mathematician and physicist known for his contributions to the theory of supersymmetry and supermanifolds as well as to the… …   Wikipedia

  • Grassmann number — In mathematical physics, a Grassmann number (also called an anticommuting number or anticommuting c number) is a mathematical construction which allows a path integral representation for Fermionic fields. They were discovered by David John… …   Wikipedia

  • Differential calculus over commutative algebras — In mathematics the differential calculus over commutative algebras is a part of commutative algebra based on the observation that most concepts known from classical differential calculus can be formulated in purely algebraic terms. Instances of… …   Wikipedia

  • Zonal spherical function — In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K (often a maximal compact subgroup) that arises as the matrix coefficient of a K invariant vector in an… …   Wikipedia

  • Stereo camera — A stereo camera is a type of camera with two or more lenses. This allows the camera to simulate human binocular vision, and therefore gives it the ability to capture three dimensional images, a process known as stereo photography. Stereo cameras… …   Wikipedia

  • List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

  • Intolerance au lactose — Intolérance au lactose La digestion du lactose qui ne se fait pas chez les personnes intolérantes. L’intolérance au lactose est l’incapacité à digérer le lactose (sucre de lait) à cause de l’absence ou de la quantité insuffisante d’enzymes… …   Wikipédia en Français

  • Intolérance Au Lactose — La digestion du lactose qui ne se fait pas chez les personnes intolérantes. L’intolérance au lactose est l’incapacité à digérer le lactose (sucre de lait) à cause de l’absence ou de la quantité insuffisante d’enzymes digestives. Somma …   Wikipédia en Français

  • Intolérance au lactose — La digestion du lactose qui ne se fait pas chez les personnes intolérantes. L’intolérance au lactose est l’incapacité à digérer le lactose (sucre de lait) à cause de l’absence ou de la quantité insuffisante d’enzymes digestives, la lactase. On… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”