- Triangular function
The triangular function (also known as the triangle function, hat function, or tent function) is defined either as:
:egin{align}operatorname{tri}(t) = and (t) quad &overset{underset{mathrm{def{{=} max(1 - |t|, 0) \&= egin{cases}1 - |t|, & |t| < 1 \0, & mbox{otherwise} end{cases}end{align}
or, equivalently, as the
convolution of two identical unitrectangular function s::egin{align}operatorname{tri}(t) = operatorname{rect}(t) * operatorname{rect}(t) quad&overset{underset{mathrm{def{{=} int_{-infty}^infty mathrm{rect}( au) cdot mathrm{rect}(t- au) d au\&= int_{-infty}^infty mathrm{rect}( au) cdot mathrm{rect}( au-t) d au .end{align}
The function is useful in
signal processing and "communication systems engineering" as a representation of an idealized signal, and as a prototype or kernel from which more realistic signals can be derived. It also has applications inpulse code modulation as a pulse shape for transmittingdigital signal s and as amatched filter for receiving the signals. It is also equivalent to the triangular window sometimes called theBartlett window .Scaling
For any parameter, a e 0, :
:egin{align}operatorname{tri}(t/a) &= int_{-infty}^infty mathrm{rect}( au) cdot mathrm{rect}( au - t/a) d au \&= egin{cases}1 - |t/a|, & |t| < |a| \0, & mbox{otherwise} .end{cases}end{align}
Fourier transform
The transform is easily determined using the convolution property of Fourier transforms and the Fourier transform of the rectangular function:
:egin{align}mathcal{F}{operatorname{tri}(t)} &= mathcal{F}{operatorname{rect}(t) * operatorname{rect}(t)}\&= mathcal{F}{operatorname{rect}(t)}cdot mathcal{F}{operatorname{rect}(t)}\&= mathcal{F}{operatorname{rect}(t)}^2\&= mathrm{sinc}^2(f) .end{align}
ee also
*
Tent map
Wikimedia Foundation. 2010.