Minkowski functional

Minkowski functional

In functional analysis, given a linear space X, a Minkowski functional is a device that uses the linear structure to introduce a topology on X.

Contents

Motivation

Example 1

Consider a normed vector space X, with the norm ||·||. Let K be the unit sphere in X. Define a function p : X → R by

p(x) = \inf \left\{r > 0: x \in r K \right\}.

One can see that p(x) = \|x\|, i.e. p is just the norm on X. The function p is a special case of a Minkowski functional.

Example 2

Let X be a vector space without topology with underlying scalar field K. Take φ ∈ X' , the algebraic dual of X, i.e. φ : X → K is a linear functional on X. Fix a > 0. Let the set K be given by

K = \{ x \in X : | \phi(x) | \leq a \}.

Again we define

p(x) = \inf \left\{r > 0: x \in r K \right\}.

Then

p(x) = \frac{1}{a} | \phi(x) |.

The function p(x) is another instance of a Minkowski functional. It has the following properties:

  1. It is subadditive: p(x + y) ≤ p(x) + p(y),
  2. It is homogeneous: for all αK, p(α x) = |α| p(x),
  3. It is nonnegative.

Therefore p is a seminorm on X, with an induced topology. This is characteristic of Minkowski functionals defined via "nice" sets. There's a one-to-one correspondence between seminorms and the Minkowski functional given by such sets. What is meant precisely by "nice" is discussed in the section below.

Notice that, in contrast to a stronger requirement for a norm, p(x) = 0 need not imply x = 0. In the above example, one can take a nonzero x from the kernel of φ. Consequently, the resulting topology need not be Hausdorff.

Definition

The above examples suggest that, given a (complex or real) vector space X and a subset K, one can define a corresponding Minkowski functional

p_K:X \rightarrow [0, \infty)

by

p_K (x) = \inf \left\{r > 0: x \in r K \right\},

which is often called the gauge of K.

It is implicitly assumed in this definition that 0 ∈ K and the set {r > 0: xr K} is nonempty. In order for pK to have the properties of a seminorm, additional restrictions must be imposed on K. These conditions are listed below.

  1. The set K being convex implies the subadditivity of pK.
  2. Homogeneity, i.e. pK(α x) = |α| pK(x) for all α, is ensured if K is balanced, meaning α KK for all |α| ≤ 1.

Convexity of K

A simple geometric argument that shows convexity of K implies subadditivity is as follows. Suppose for the moment that pK(x) = pK(y) = r. Then for all ε > 0, we have x, y ∈ (r + ε) K = K' . The assumption that K is convex means K' is also. Therefore ½ x + ½ y is in K' . By definition of the Minkowski functional pK, one has

p_K\left( \frac{1}{2} x + \frac{1}{2} y\right) \le r + \epsilon = \frac{1}{2} p_K(x) + \frac{1}{2} p_K(y) + \epsilon .

But the left hand side is ½ pK(x + y), i.e. the above becomes

p_K(x + y) \le  p_K(x) + p_K(y) + \epsilon, \quad \mbox{for all} \quad \epsilon > 0.

This is the desired inequality. The general case pK(x) > pK(y) is obtained after the obvious modification.

Note Convexity of K, together with the initial assumption that the set {r > 0: xr K} is nonempty, implies that K is absorbent.

Balancedness of K

Notice that K being balanced implies that

\lambda x \in r K \quad \mbox{if and only if} \quad x \in \frac{r}{|\lambda|} K.

Therefore

p_K (\lambda x) = \inf \left\{r > 0:  \lambda x \in r K \right\} 
=  \inf \left\{r > 0:  x \in \frac{r}{|\lambda|} K \right\}
= \inf \left\{ | \lambda | \frac{r}{ | \lambda | } > 0:  x \in \frac{r}{|\lambda|} K \right\}
= |\lambda| p_K(x).

Related links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Minkowski — (Hebrew: מינקובסקי‎, Russian: Минковский) is a surname, and may refer to: Eugène Minkowski (1885 1972), French psychiatrist Hermann Minkowski (1864 1909) Russian born German mathematician and physicist, known for: Minkowski addition… …   Wikipedia

  • Minkowski norm — may refer to: The proper length in Minkowski space The norm defined in the tangent bundle of a Finsler manifold The vector p norm The norm defined by a Minkowski functional This disambiguation page lists mathematics articles associated with the… …   Wikipedia

  • Minkowski's question mark function — Minkowski question mark function. ?(x) is on the left and ?(x) x is on the right. In …   Wikipedia

  • Hermann Minkowski — Infobox Scientist name = Hermann Minkowski |300px caption = birth date = birth date|1864|6|22|mf=y birth place = Aleksotas, Kaunas, Lithuania, Russian Empire death date = death date and age|1909|1|12|1864|6|22|mf=y death place = Göttingen,… …   Wikipedia

  • Smith–Minkowski–Siegel mass formula — In mathematics, the Smith–Minkowski–Siegel mass formula (or Minkowski–Siegel mass formula) is a formula for the sum of the weights of the lattices (quadratic forms) in a genus, weighted by the reciprocals of the orders of their automorphism… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Locally convex topological vector space — In functional analysis and related areas of mathematics, locally convex topological vector spaces or locally convex spaces are examples of topological vector spaces (TVS) which generalize normed spaces. They can be defined as topological vector… …   Wikipedia

  • Topological vector space — In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. As the name suggests the space blends a topological structure (a uniform structure to be precise) with the algebraic concept of a… …   Wikipedia

  • Hugo Hadwiger — (1908 ndash; 1981) was a Swiss mathematician. He is known for Hadwiger s theorem in integral geometry, and a number of conjectures. He also worked on a Swiss enhancement of the Enigma cipher machine, known as NEMA.His 1957 book Vorlesungen über… …   Wikipedia

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”