Schumann resonances

Schumann resonances

The Schumann resonances (SR) are a set of spectrum peaks in the extremely low frequency (ELF) portion of the Earth's electromagnetic field spectrum. Schumann resonances are global electromagnetic resonances, excited by lightning discharges in the cavity formed by the Earth surface and the ionosphere.

Description

This global electromagnetic resonance phenomenon is named after physicist Winfried Otto Schumann who predicted it mathematically in 1952. Schumann resonance occurs because the space between the surface of the Earth and the conductive ionosphere acts as a waveguide. The limited dimensions of the Earth cause this waveguide to act as a resonant cavity for electromagnetic waves in the ELF band. The cavity is naturally excited by energy from lightning strikes. Schumann resonance modes are observed in the power spectra of the natural electromagnetic background noise, as separate peaks at extremely low frequencies (ELF) around 7.8, 14.3, 20.8, 27.3 and 33.8 Hz.

The fundamental mode of the Schumann resonance is a standing wave in the Earth-ionosphere cavity with a wavelength equal to the circumference of the Earth. This lowest-frequency (and highest-intensity) mode of the Schumann resonance occurs at a frequency of approximately 7.8 Hz. Further resonance modes appear at approximately 6.5 Hz intervals, a characteristic attributed to the atmosphere's spherical geometry. The peaks exhibit a spectral width of approximately 20% on account of the damping of the respective modes in the dissipative cavity. The eighth overtone lies at approximately 59.9 Hz.

Schumann resonances are used to track global lightning activity. Owing to the connection between lightning activity and the Earth's climate it has been suggested that they may also be used to monitor global temperature variations and variations of upper water vapor. It has been speculated that extraterrestrial lightning (on other planets) may also be detected and studied with Schumann resonances. Schumann resonances have been used for research and monitoring of the lower ionosphere on Earth and was suggested for exploration of lower ionosphere parameters on celestial bodies. Effects on Schumann resonances have been reported following geomagnetic and ionospheric disturbances. More recently, discrete Schumann resonance excitations have been linked to transient luminous events – sprites, elves, jets, and other upper-atmospheric lightning. A new field of interest using Schumann resonances is related to short-term earthquake prediction. Schumann resonances have evolved beyond the domain of geophysics where it initially began, and has since gained interest in medicine, from artists and musicians, as well as from fields such as bioenergeticscite journal | author=Irina Cosic | title= Human Electrophysiological Signal Responses to ELF Schumann Resonance and Artificial Electromagnetic Fields | journal= FME Transactions.. | volume=34,No 2 |year=2006 | pages=93–103 |url=http://www.mas.bg.ac.yu/istrazivanje/biblioteka/publikacije/Transactions_FME/Volume34/2/6%20Irena%20Cosic%2093-103.pdf] , acupuncturecite journal | author=Irina Cosic | title= Human Electrophysiological Signal Responses to ELF Schumann Resonance and Artificial Electromagnetic Fields | journal= FME Transactions.. | volume=34,No 2 |year=2006 | pages=93–103 |url=http://www.mas.bg.ac.yu/istrazivanje/biblioteka/publikacije/Transactions_FME/Volume34/2/6%20Irena%20Cosic%2093-103.pdf] , and psychobiology. The idea that naturally Schumann resonances, which are many orders of magnitude weaker than both the artificial fields in such studies and typical environmental fields, could yield similar effects is conjectural and highly controversial.

History

The first suggestion that an ionosphere existed, capable of trapping electromagnetic waves, was made by Heaviside and Kennelly in 1902 cite journal | author=O. Heaviside | title= Telegraphy, Sect. 1, Theory | journal= Encyc. Brit.10th ed.. . London | volume=9 |year=1902 | pages=213–218] cite journal | author=A.E. Kennelly | title= On the elevation of the electrically-conducting strata of the earth's atmosphere | journal= Electrical world and engineer | volume=32 |year=1902 | pages=473–473] . It took another twenty years before Edward Appleton and Barnett in 1925 cite journal | author= Appleton, E. V. , M. A. F. Barnett | title= On Some Direct Evidence for Downward Atmospheric Reflection of Electric Rays | journal= Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character | volume=109(752) |year=1925 | pages=621–641 | doi= 10.1098/rspa.1925.0149] , were able to prove experimentally the existence of the ionosphere. However, even prior to this, the first documented observations of global electromagnetic resonances were made by Nikola Tesla in 1905 and formed the basis for his scheme for wireless energy transmission cite journal | author= N. Tesla | title= The Transmission of Electrical Energy Without Wires As A Means Of Furthering World Peace | journal= Electrical World And Engineer | volume= January 7 |year=1905 | pages=21–24] . Although some of the most important mathematical tools for dealing with spherical waveguides were developed by Watson in 1918 cite journal | author= Watson, G.N. | title= The diffraction of electric waves by the Earth | journal= Proc. Roy. Soc. (London) | volume= Ser.A 95 |year=1918| pages=83–99] , it was Winfried Otto Schumann who first studied the theoretical aspects of the global resonances of the earth-ionosphere waveguide system, known today as the Schumann resonances. In 1952-1954 Schumann, together with Köning, attempted to measure the resonant frequencies cite journal | author= Schumann W. O. | title= Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist | journal= Zeitschrift und Naturfirschung | volume= 7a |year=1952| pages=149–154] cite journal | author= Schumann W. O. | title= Über die Dämpfung der elektromagnetischen Eigenschwingnugen des Systems Erde – Luft – Ionosphäre | journal= Zeitschrift und Naturfirschung | volume= 7a |year=1952| pages=250–252] cite journal | author= Schumann W. O. | title= Über die Ausbreitung sehr Langer elektriseher Wellen um die Signale des Blitzes | journal= Nuovo Cimento | volume= 9 |year=1952| pages=1116–1138 | doi= 10.1007/BF02782924] cite journal | author= Schumann W. O. and H. König | title= Über die Beobactung von Atmospherics bei geringsten Frequenzen | journal= Naturwiss | volume= 41 |year=1954| pages=183–184 | doi= 10.1007/BF00638174] . However, it was not until measurements made by Balser and Wagner in 1960-1963 cite journal | author= Balser M. and C. Wagner | title= Measurement of the spectrum of radio noise from 50 to 100 c/s | journal= J.Res. NBS | volume= 64D |year=1960 | pages=415–418] cite journal | author= Balser M. and C. Wagner | title= Observations of earth-ionosphere cavity resonances | journal= Nature | volume= 188 |year=1960 | pages=638–641 | doi= 10.1038/188638a0] cite journal | author= Balser M. and C. Wagner | title= Diurnal power variations of the earth-ionosphere cavity modes and their relationship to worldwide thunderstorm activity | journal= J.G.R | volume= 67 |year=1962 | pages=619–625 | doi= 10.1029/JZ067i002p00619] cite journal | author= Balser M. and C. Wagner | title= On frequency variations of the earth-ionosphere cavity modes | journal= J.G.R | volume= 67 |year=1962 | pages=4081–4083 | doi= 10.1029/JZ067i010p04081] cite journal | author= Balser M. and C. Wagner | title= Effect of a high-altitude nuclear detonation on the earth-ionosphere cavity | journal= J.G.R | volume= 68 |year=1963 | pages=4115–4118] that adequate analysis techniques were available to extract the resonance information from the background noise. Since then there has been an increasing interest in Schumann resonances in a wide variety of fields.

Basic theory

Lightning discharges are considered as the primary natural source of Schumann resonances. Lightning channels behave like a huge antenna which radiates electromagnetic energy as impulsive signals at frequencies below about 100 kHz cite book | author= Volland, H. | title= Atmospheric Electrodynamics | publisher = Springer-Verlag, Berlin | year=1984] . These signals are very weak, but the earth-ionosphere waveguide behaves like a resonator at ELF frequencies and amplifies the spectral signals from lightning at the resonance frequencies cite book | author= Volland, H. | title= Atmospheric Electrodynamics | publisher = Springer-Verlag, Berlin | year=1984] .

In an ideal cavity, the resonant frequency of the n-th mode f_{n} is determined by the Earth radius a and the speed of light c cite journal | author= Schumann W. O. | title= Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist | journal= Zeitschrift und Naturfirschung | volume= 7a |year=1952| pages=149–154] .

:f_{n} =frac{c}{2 pi a}sqrt{n(n+1)}

The real Earth-ionosphere waveguide is not a perfect electromagnetic cavity. Losses due to finite ionosphere electrical conductivity lower the propagation speed of electromagnetic signals in the cavity, resulting in a lowered resonance frequency than would be expected in an ideal case, and the observed peaks are wide. In addition there are a number of horizontal asymmetries – day-night difference in the height of the ionosphere, latitudinal changes in the Earth magnetic field, sudden ionospheric disturbances, polar cap absorption, etc. that complicate the Schumann resonance power spectra.

Measurements

Today Schumann resonances are recorded at many separate research stations around the world. The electromagnetic sensors used to measure Schumann resonances typically consist of two horizontal magnetic induction coils for receiving the magnetic field in the north-south and the east-west direction and one vertical electrica dipole antenna for observing the vertical electric field. The Schumann resonance electric field amplitude (~300 microVolts/m) is much smaller than the static electric field (~150 V/m) in the atmosphere. Similarly, the amplitude of the Schumann resonance magnetic field (~1 picoTesla) is orders of magnitude smaller than the Earth magnetic field (~30-50 microTesla) cite journal | author= Price, C., O. Pechony, E. Greenberg | title= Schumann resonances in lightning research | journal= Journal of Lightning Research | volume= 1 |year=2006| pages=1– 15] . Therefore, special receivers and antennas are needed to detect and record Schumann resonances. The electric component is commonly measured with a ball antenna, suggested by Ogawa et al. in 1966 cite journal | author= Ogawa, T., Y. Tanka, T. Miura, and M. Yasuhara | title= Observations of natural ELF electromagnetic noises by using the ball antennas | journal= J. Geomagn. Geoelectr | volume= 18 |year=1966| pages=443– 454] , connected to a high-impedance amplifier. The magnetic field is measured with magnetic induction coils consisting of tens- to hundreds-of-thousands of turns around material with very high magnetic permeability.

Applications

Global lightning activity

From the very beginning of Schumann resonance studies, they were used to monitor global lightning activity by tracking changes in Schumann resonance field intensities. At any given time there are about 2000 thunderstorms around the globe cite journal | author= Heckman S. J., E. Williams, | title= Total global lightning inferred from Schumann resonance measurements | journal= J. G. R. | volume= 103(D24) |year=1998| pages=31775–31779 | doi= 10.1029/98JD02648] . Producing ~50 lightning events per second cite journal | author= Christian H. J., R.J. Blakeslee, D.J. Boccippio, W.L. Boeck, D.E. Buechler, K.T. Driscoll, S.J. Goodman, J.M. Hall, W.J. Koshak, D.M. Mach, M.F. Stewart, | title= Global frequency and distribution of lightning as observed from space by the Optical Transient Detector | journal= J. G. R. | volume= 108(D1) |year=2003| pages=4005 | doi= 10.1029/2002JD002347] , these thunderstorms create the background Schumann resonance signal.

Determining the spatial lightning distribution from Schumann resonance records is a complex problem: in order to estimate the lightning intensity from Schumann resonance records it is necessary to account for both the distance to lightning sources as well as the wave propagation between the source and the observer. The common approach is to make a preliminary assumption on the spatial lightning distribution, basing on the known properties of lightning climatology. An alternative approach is placing the receiver at the North or South Pole, which remain approximately equidistant from the main thunderstorm centers during the day cite journal | author= Nickolaenko, A.P. | title= Modern aspects of Schumann resonance studies | journal= J.A.S.T.P. | volume= 59 |year=1997| pages=806–816] . One method not requiring preliminary assumptions on the lightning distribution cite journal | author= Shvets A.V. | title= A technique for reconstruction of global lightning distance profile from background Schumann resonance signal | journal= J.A.S.T.P. | volume= 63 |year=2001| pages=1061–1074] is based on the decomposition of the average background Schumann resonance spectra, utilizing ratios between the average electric and magnetic spectra and between their linear combinations.

Diurnal variations

The best documented and the most debated features of the Schumann resonance phenomenon are the diurnal variations of the background Schumann resonance power spectrum.

A characteristic Schumann resonance diurnal record reflects the properties of both global lightning activity and the state of the earth-ionosphere cavity between the source region and the observer. The vertical electric field, which is equally sensitive in all directions and therefore measures the global lightning, shows three dominant maxima, associated with the three “hot spots” of planetary lightning activity: 9 UT (Universal Time) peak, linked to the increased thunderstorm activity from south-east Asia; 14 UT peak associated with the peak in African lightning activity; and the 20 UT peak resulting for the increase in lightning activity in South America. The time and amplitude of the peaks vary throughout the year, reflecting the seasonal changes in lightning activity.

”Chimney” ranking

In general, the African peak is the strongest, reflecting the major contribution of the African “chimney” to the global lightning activity. The ranking of the two other peaks – Asian and American – is the subject of a vigorous dispute among Schumann resonance scientists. Experimental Schumann resonance data show a greater contribution from Asia than from South America. This contradicts optical satellite and climatological lightning data that show the South American thunderstorm center stronger than the Asian center cite journal | author= Christian H. J., R.J. Blakeslee, D.J. Boccippio, W.L. Boeck, D.E. Buechler, K.T. Driscoll, S.J. Goodman, J.M. Hall, W.J. Koshak, D.M. Mach, M.F. Stewart, | title= Global frequency and distribution of lightning as observed from space by the Optical Transient Detector | journal= J. G. R. | volume= 108(D1) |year=2003| pages=4005 | doi= 10.1029/2002JD002347] . The reason for such disparity remains unclear. Williams and Sátori cite journal | author= Williams E. R., G. Sátori | title= Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys | journal= J.A.S.T.P. | volume= 66 |year=2004| pages=1213–1231] suggest that in order to obtain “correct” Asia-America chimney ranking, it is necessary to remove the influence of the day/night variations in the ionospheric conductivity (day-night asymmetry influence) from the Schumann resonance records. On the other hand, such “corrected” records presented in the work by Sátori et al. cite journal | author= Sátori G., M. Neska, E. Williams, J. Szendrői | title= Signatures of the non-uniform Earth-ionosphere cavity in high time-resolution Schumann resonance records | journal= Radio Science | volume= in print |year=2007 ] show that even after the removal of the day-night asymmetry influence from Schumann resonance records, the Asian contribution remains greater than American. Similar results were obtained by Pechony et al. cite journal | author= Pechony, O., C. Price, A.P. Nickolaenko | title= Relative importance of the day-night asymmetry in Schumann resonance amplitude records | journal= Radio Science | volume= in print |year=2007 ] who calculated Schumann resonance fields from satellite lightning data. Both simulations – those neglecting the day-night asymmetry, and those taking this asymmetry into account, showed same Asia-America chimney ranking. As for today, the reason for the “invert” ranking of Asia and America chimneys in Schumann resonance records remains unclear and the subject requires further, targeted research.

Influence of the day-night asymmetry

In the early literature the observed diurnal variations of Schumann resonance power were explained by the variations in the source-receiver (lightning-observer) geometry cite journal | author= Balser M. and C. Wagner | title= Measurement of the spectrum of radio noise from 50 to 100 c/s | journal= J.Res. NBS | volume= 64D |year=1960 | pages=415–418] . It was concluded that no particular systematic variations of the ionosphere (which serves as the upper waveguide boundary) are needed to explain these variations cite journal | author= Madden T., W. Thompson | title= Low-frequency electromagnetic oscillations of the Earth-ionosphere cavity | journal= Rev. Geophys. | volume= 3(2) |year=1965| pages=211 | doi= 10.1029/RG003i002p00211] . Subsequent theoretical studies supported the early estimations of the small influence of the ionosphere day-night asymmetry (difference between day-side and night-side ionosphere conductivity) on the observed variations in Schumann resonance field intensities cite book | author= Nickolaenko A. P. and M. Hayakawa | title Resonances in the Earth-ionosphere cavity | publisher = Kluwer Academic Publishers, Dordrecht-Boston-London | year=2002] .

The interest in the influence of the day-night asymmetry in the ionosphere conductivity on Schumann resonances gained a new strength in the 1990s, after publication of a work by Sentman and Fraser cite journal | author= Sentman, D.D., B. J. Fraser | title=Simultaneous observations of Schumann Resonances in California and Australia - Evidence for intensity modulation by the local height of the D region | journal= Journal of geophysical research | volume=96(9) | year=1991 | pages=15973–15984 | doi=10.1029/91JA01085] . Sentman and Fraser developed a technique to separate the global and the local contributions to the observed field power variations using records obtained simultaneously at two stations. Sentman and Fraser interpreted the local contribution as ionosphere height variation. Their work, which was based on a combination of observations and energy conservation arguments, convinced many scientists in the importance of the ionospheric day-night asymmetry and inspired numerous experimental studies. However recently it was shown that results obtained by Sentman and Fraser can be approximately simulated with a uniform model (without taking into account ionosphere day-night variation) and therefore cannot be uniquely interpreted solely in terms of ionosphere height variation cite journal | author= Pechony, O., C. Price | title= Schumann Resonances: interpretation of local diurnal intensity modulations | journal= Radio Sci.| volume=41, 42(2) | year=2006 | doi= 10.1029/2006RS003455 | pages= RS2S05 | unused_data= |RS2S05, doi=10.1029/2006RS003455] .

Schumann resonance amplitude records show significant diurnal and seasonal variations which in general coincide in time with the times of the day-night transition (the terminator). This time-matching seems to support the suggestion of a significant influence of the day-night ionosphere asymmetry on Schumann resonance amplitudes. There are records showing almost clock-like accuracy of the diurnal amplitude changes cite journal | author= Sátori G., M. Neska, E. Williams, J. Szendrői | title= Signatures of the non-uniform Earth-ionosphere cavity in high time-resolution Schumann resonance records | journal= Radio Science | volume= in print |year=2007 ] . On the other hand there are numerous days when Schumann Resonance amplitudes do not increase at sunrise or do not decrease at sunset. There are studies showing that the general behavior of Schumann resonance amplitude records can be recreated from diurnal and seasonal thunderstorm migration, without invoking ionospheric variations cite book | author= Nickolaenko A. P. and M. Hayakawa | title Resonances in the Earth-ionosphere cavity | publisher = Kluwer Academic Publishers, Dordrecht-Boston-London | year=2002] cite journal | author= Pechony, O., C. Price, A.P. Nickolaenko | title= Relative importance of the day-night asymmetry in Schumann resonance amplitude records | journal= Radio Science | volume= in print |year=2007 ] . Two recent independent theoretical studies have shown that the variations in Schumann resonance power related to the day-night transition are much smaller than those associated with the peaks of the global lightning activity, and therefore the global lightning activity plays a more important role in the variation of the Schumann resonance power cite journal | author= Yang H., V. P. Pasko | title= Three-dimensional finite difference time domain modeling of the diurnal and seasonal variations in Schumann resonance parameters | journal= Radio Science | volume= 41 | year=2007 | doi= 10.1029/2005RS003402 | pages= RS2S14 | unused_data= |RS2S14, doi=10.1029/2005RS003402] cite journal | author= Pechony, O., C. Price, A.P. Nickolaenko | title= Relative importance of the day-night asymmetry in Schumann resonance amplitude records | journal= Radio Science | volume= in print |year=2007 ] .

It is generally acknowledged that source-observer effects are the dominant source of the observed diurnal variations, but there remains considerable controversy about the degree to which day-night signatures are present in the data. Part of this controversy stems from the fact that the Schumann resonance parameters extractable from observations provide only a limited amount of information about the coupled lightning source-ionospheric system geometry. The problem of inverting observations to simultaneously infer both the lightning source function and ionospheric structure is therefore extremely underdetermined, leading to the possibility of nonunique interpretations.

The “inverse problem”

One of the interesting problems in Schumann resonances studies is determining the lightning source characteristics (the “inverse problem”). Temporally resolving each individual flash is impossible,Clarifyme|date=March 2008 but there are intense ELF transient events, also named ‘‘Q bursts’’. Q-bursts are triggered by intense lightning strikes, associated with a large charge transfer and often high peak current cite journal | author= Ogawa, T., Y. Tanka, T. Miura, and M. Yasuhara | title= Observations of natural ELF electromagnetic noises by using the ball antennas | journal= J. Geomagn. Geoelectr | volume= 18 |year=1966| pages=443– 454] . Q-bursts can exceed the amplitude of the background signal level by a factor of 10 or more, and appear with intervals of ~10sec cite journal | author= Shvets A.V. | title= A technique for reconstruction of global lightning distance profile from background Schumann resonance signal | journal= J.A.S.T.P. | volume= 63 |year=2001| pages=1061–1074] , which allows to consider them as isolated events and determine the source lightning location. The source location is determined with either multi-station or single-station techniques, and requires assuming a model for the earth-ionosphere cavity. The multi-station techniques are more accurate, but require more complicated and expensive facilities.

Transient luminous events research

It is now believed that many of the Schumann resonances transients (Q bursts) are related to the transient luminous events (TLEs). In 1995 Boccippio et al. cite journal | author= Boccippio, D. J., E. R. Williams, S. J. Heckman, W. A. Lyons, I. T. Baker, R. Boldi | title= Sprites, ELF transients, and positive ground strokes | journal= Science | volume= 269| year=1995 | pages=1088–1091 | doi= 10.1126/science.269.5227.1088 | pmid= 17755531] suggested that sprites, the most common TLE, are produced by positive cloud-to-ground lightning occurring in the stratiform region of a thunderstorm system, and are accompanied by Q-burst in the Schumann resonances band. Recent observations cite journal | author= Boccippio, D. J., E. R. Williams, S. J. Heckman, W. A. Lyons, I. T. Baker, R. Boldi | title= Sprites, ELF transients, and positive ground strokes | journal= Science | volume= 269| year=1995 | pages=1088–1091 | doi= 10.1126/science.269.5227.1088 | pmid= 17755531] cite journal | author= Price, C., E. Greenberg, Y. Yair, G. Sátori, J. Bór, H. Fukunishi, M. Sato, P. Israelevich, M. Moalem, A. Devir, Z. Levin, J.H. Joseph, I. Mayo, B. Ziv, A. Sternlieb | title= Ground-based detection of TLE-producing intense lightning during the MEIDEX mission on board the Space Shuttle Columbia | journal= G.R.L. | volume= 31| year=2004 | unused_data= |L20107, doi=1029/2004GL020711] reveal that occurrences of sprites and Q bursts are highly correlated and Schumann resonances data can possibly be used to estimate the global occurrence rate of sprites cite journal | author= Hu, W., S. A. Cummer, W. A. Lyons, T. E. Nelson | title= Lightning charge moment changes for the initiation of sprites | journal= G.R.L. | volume= 29(8) | year=2002 | pages = 1279 | doi=10.1029/2001GL014593] .

Climate change research

Global climate change is the subject of intense debate and concern. One of the important aspects in understanding global climate change is the development of tools and techniques that would allow continuous and long-term monitoring of processes affecting the global climate. It has been suggested that Schumann resonances are one of only a few tools that can provide such global information reliably and cheaply.

Global temperature

Williams [1992] cite journal | author= Williams, E.R. | title= The Schumann resonance: a global tropical thermometer | journal= Science | volume= 256| year=1992| pages = 1184–1186 | doi= 10.1126/science.256.5060.1184 | pmid= 17795213] suggested that global temperature may be monitored with the Schumann resonances. The link between Schumann resonance and temperature is lightning flash rate, which increases nonlinearly with temperature cite journal | author= Williams, E.R. | title= The Schumann resonance: a global tropical thermometer | journal= Science | volume= 256| year=1992| pages = 1184–1186 | doi= 10.1126/science.256.5060.1184 | pmid= 17795213] . The nonlinearity of the lightning-to-temperature relation provides a natural amplifier of the temperature changes and makes Schumann resonance a sensitive “thermometer”. Moreover, the ice particles that are believed to participate in the electrification processes which result in a lightning discharge cite journal | author= Williams, E.R. | title= The tripole structure of thunderstorms | journal= J. G. R.| volume= 94| year=1989| pages = 13151–13167 | doi= 10.1029/JD094iD11p13151] have an important role in the radiative feedback effects that influence the atmosphere temperature. Schumann resonances may therefore help us to understand these feedback effects.

Upper tropospheric water vapor

Tropospheric water vapor is a key element of the Earth’s climate, which has direct effects as a greenhouse gas, as well as indirect effect through interaction with clouds, aerosols and tropospheric chemistry. Upper tropospheric water vapor (UTWV) has a much greater impact on the greenhouse effect than water vapor in the lower atmosphere cite journal | author= Hansen, J., A. Lacis, D. Rind, G. Russel, P. Stone, I. Fung, R. Ruedy, J., Lerner | title= Climate sensitivity: Analysis of feedback mechanisms | journal= Climate Processes and Climate Sensitivity, J.,E. Hansen and T. Takahashi, eds.. AGU Geophys. Monograph | volume= 29 | year=1984| pages = 130–163] , but whether this impact is a positive, or a negative feedback is still uncertain cite journal | author= Rind, D. | title= Just add water vapor | journal= Science | volume= 28| year=1998| pages = 1152–1153 | doi= 10.1126/science.281.5380.1152] . The main challenge in addressing this question is the difficulty in monitoring UTWV globally over long timescales. Continental deep-convective thunderstorms produce most of the lightning discharges on Earth. In addition, they transport large amount of water vapor into the upper troposphere, dominating the variations of global UTWV. Price [2000] cite journal | author= Price, C. | title= Evidence for a link between global lightning activity and upper tropospheric water vapor | journal= Letters to Nature | volume= 406 | year=2000 | pages = 290–293 | doi= 10.1038/35018543] suggested that changes in the UTWV can be derived from records of Schumann Resonances.

Extraterrestrial lightning

Existence of Schumann resonances is conditioned primarily by two factors: 1) presence of a substantial ionosphere with electric conductivity increasing with height from low values near the surface (or a high-conductivity layer, in case of gaseous planets); 2) source of excitation of electromagnetic waves in the ELF range. Within the Solar System there are five candidates for Schumann resonance detection besides the Earth: Venus, Mars, Jupiter, Saturn and its moon Titan.

Modeling Schumann resonances on the planets and moons of the Solar System is complicated by the lack of knowledge of the waveguide parameters. No capability to validate the results exists today, but in the case of Mars there exists the possibility that future lander missions could carry instrumentation to perform the necessary measurements. Theoretical studies are therefore primarily directed to parameterizing the problem for future planetary explorers.

The strongest evidence for lightning on Venus comes from the impulsive electromagnetic waves detected by Venera 11 and 12 landers. Schumann resonances on Venus were studied by Nickolaenko and Rabinowicz [1982] cite journal | author= Nickolaenko A. P., L. M. Rabinowicz | title= On the possibility of existence of global electromagnetic resonances on the planets of Solar system | journal= Space Res. | volume= 20 | year=1982| pages = 82–89] and Pechony and Price [2004] cite journal | author= Pechony, O., C. Price | title= Schumann resonance parameters calculated with a partially uniform knee model on Earth, Venus, Mars, and Titan | journal= Radio Sci.| volume= 39(5)| year=2004 | doi= 10.1029/2004RS003056 | pages= RS5007 | unused_data= |RS5007, doi=10.1029/2004RS003056] . Both studies yielded very close results, indicating that Schumann resonances should be easily detectable on this planet given a lightning source of excitation and a suitably located sensor.

On Mars lightning activity has not been detected, but charge separation and lightning strokes are considered possible in the Martian dust storms cite journal | author= Eden, H. F. and B. Vonnegut | title= Electrical breakdown caused by dust motion in low-pressure atmospheres: consideration for Mars | journal= Science | volume= 180 | year=1973| pages=962 | doi= 10.1126/science.180.4089.962 | pmid= 17735929] cite journal | author= Renno N. O., A. Wong, S. K. Atreya, I. de Pater, M. Roos-Serote | title= Electrical discharges and broadband radio emission by Martian dust devils and dust storms | journal= G. R. L.| volume= 30 (22)| year=2003| pages=2140 | doi= 10.1029/2003GL017879] . Martian global resonances were modeled by Sukhorukov [1991] cite journal | author= Sukhorukov A. I. | title= On the Schumann resonances on Mars | journal= Planet. Space Sci.| volume= 39(12) | year=1991| pages=1673–1676 | doi= 10.1016/0032-0633(91)90028-9] , Pechony and Price [2004] cite journal | author= Pechony, O., C. Price | title= Schumann resonance parameters calculated with a partially uniform knee model on Earth, Venus, Mars, and Titan | journal= Radio Sci.| volume= 39(5)| year=2004 | doi= 10.1029/2004RS003056 | pages= RS5007 | unused_data= |RS5007, doi=10.1029/2004RS003056] and Molina-Cuberos et al. [2006] cite journal | author= Molina-Cuberos G. J., J. A. Morente, B. P. Besser, J. Porti, H. Lichtenegger, K. Schwingenschuh, A. Salinas, J. Margineda | title= Schumann resonances as a tool to study the lower ionosphere of Mars | journal= Radio Science | volume= 41 | year=2006 | pages= RS1003 | doi= 10.1029/2004RS003187 | unused_data= |RS1003, doi=10.1029/2004RS003187] . The results of the three studies are somewhat different, but it seems that at least the first two Schumann resonance modes should be detectable.

It was long ago suggested that lightning dischargers may occur on Titan cite journal | author= Lammer H., T. Tokano, G. Fischer, W. Stumptner, G. J. Molina-Cuberos, K. Schwingenschuh, H. O. Rucher | title= Lightning activity of Titan: can Cassiny/Huygens detect it?| journal= Planet. Space Sci. | volume= 49 | year=2001| pages=561–574 | doi= 10.1016/S0032-0633(00)00171-9] , but recent data from Cassini-Huygens seems to indicate that there is no lightning activity on this largest satellite of Saturn. Due to the recent interest in Titan, associated with the Cassini-Huygens mission, its ionosphere is perhaps the most thoroughly modeled today. Schumann resonances on Titan received more attention than on other celestial bodies. Schumann resonances on Titan were studied by Besser et al. [2002] cite journal | author= Besser, B. P., K. Schwingenschuh, I. Jernej, H. U. Eichelberger, H. I. M. Lichtenegger, M. Fulchignoni, G. J. Molina-Cuberos, J. A. Morente, J. A. Porti, A.Salinas | title= Schumann resonances as indicators for lighting on Titan | journal= Proceedings of the Second European Workshop on Exo/Astrobiology, Graz, Australia, 16-19 Sep. | year=2002 ] , Morente et al. [2003] cite journal | author= Morente J. A., Molina-Cuberos G. J., Porti J. A., K. Schwingenschuh, B. P. Besser | title= A study of the propagation of electromagnetic waves in Titan’s atmosphere with the TLM numerical method | journal= Icarus | volume= 162| year=2003| pages=374–384 | doi= 10.1016/S0019-1035(03)00025-3] , Molina-Cuberos et al. [2004] cite journal | author= Molina-Cuberos G. J., J. Porti, B. P. Besser, J. A. Morente, J. Margineda, H. I. M. Lichtenegger, A. Salinas, K. Schwingenschuh, H. U. Eichelberger | title= Shumann resonances and electromagnetic transparence in the atmosphere of Titan | journal= Advances in Space Research | volume= 33 | year=2004| pages=2309–2313 | doi= 10.1016/S0273-1177(03)00465-4] , Nickolaenko et al. [2003] cite journal | author= Nickolaenko A. P., B. P. Besser, K. Schwingenschuh | title= Model computations of Schumann resonance on Titan | journal= Planet. Space Sci. | volume= 51(13) | year=2003| pages= 853–862 | doi= 10.1016/S0032-0633(03)00119-3] and Pechony and Price [2004] cite journal | author= Pechony, O., C. Price | title= Schumann resonance parameters calculated with a partially uniform knee model on Earth, Venus, Mars, and Titan | journal= Radio Sci.| volume= 39(5)| year=2004 | doi= 10.1029/2004RS003056 | pages= RS5007 | unused_data= |RS5007, doi=10.1029/2004RS003056] . It appears that only the first Schumann resonance mode might be detectable on Titan.

Jupiter is the only planet where lightning activity has been optically detected. Existence of lightning activity on this planet was predicted by Bar-Nun [1975] cite journal | author= Bar-Nun A. | title= Thunderstorms on Jupiter | journal= ICARUS | volume= 24| year=1975| pages = 86–94 | doi= 10.1016/0019-1035(75)90162-1] and it is now supported by data from Galileo, Voyagers 1 and 2, Pioneers 10 and 11 and Cassini. Saturn is also expected to have intensive lightning activity, but the three visiting spacecrafts – Pioneer 11 in 1979, Voyager 1 in 1980 and Voyager 2 in 1981, failed to provide any convincing evidence from optical observations. The strong storm monitored on Saturn by the Cassini spacecraft produced no visible lightning flashes, although electromagnetic sensors aboard the spacecraft detected signatures that are characteristic of lightning. Little is known about the electrical parameters of Jupiter and Saturn interior. Even the question of what should serve as the lower waveguide boundary is a non-trivial one in case of the gaseous planets. There seem to be no works dedicated to Schumann resonances on Saturn. To date there has been only one attempt to model Schumann resonances on Jupiter cite journal | author= Sentman D. D. | title= Electrical conductivity of Jupiter's Shallow interior and the formation of a resonant planetary-ionosphere cavity | journal= ICARUS | volume= 88| year=1990| pages = 73–86 | doi= 10.1016/0019-1035(90)90177-B] . Here, the electrical conductivity profile within the gaseous atmosphere of Jupiter was calculated using methods similar to those used to model stellar interiors, and it was suggested that the same methods could be easily extended to the other giants. Given the intense lightning activity at Jupiter, the Schumann resonances should be easily detectable with a sensor suitably located within the planetary-ionospheric cavity.

ee also

*Earth's magnetic field
*Plasma (physics)
*radiant energy
*Telluric current

References

External articles and references

; General references
*Articles on the NASA ADS Database: [http://adsabs.harvard.edu/cgi-bin/nph-abs_connect?db_key=AST&db_key=PHY&db_key=PRE&qform=AST&sim_query=YES&ned_query=YES&aut_logic=OR&obj_logic=OR&author=&object=&start_mon=&start_year=&end_mon=&end_year=&ttl_logic=OR&title=%22Schumann+Resonances%22&txt_logic=OR&text=&nr_to_return=100&start_nr=1&jou_pick=ALL&ref_stems=&data_and=ALL&group_and=ALL&start_entry_day=&start_entry_mon=&start_entry_year=&end_entry_day=&end_entry_mon=&end_entry_year=&min_score=&sort=SCORE&data_type=SHORT&aut_syn=YES&ttl_syn=YES&txt_syn=YES&aut_wt=1.0&obj_wt=1.0&ttl_wt=0.3&txt_wt=3.0&aut_wgt=YES&obj_wgt=YES&ttl_wgt=YES&txt_wgt=YES&ttl_sco=YES&txt_sco=YES&version=1 Full list] | [http://adsabs.harvard.edu/cgi-bin/nph-abs_connect?db_key=AST&db_key=PHY&db_key=PRE&qform=AST&sim_query=YES&ned_query=YES&aut_logic=OR&obj_logic=OR&author=&object=&start_mon=&start_year=&end_mon=&end_year=&ttl_logic=OR&title=%22Schumann+Resonances%22&txt_logic=OR&text=&nr_to_return=100&start_nr=1&jou_pick=ALL&ref_stems=&data_and=YES&gif_link=YES&group_and=ALL&start_entry_day=&start_entry_mon=&start_entry_year=&end_entry_day=&end_entry_mon=&end_entry_year=&min_score=&sort=SCORE&data_type=SHORT&aut_syn=YES&ttl_syn=YES&txt_syn=YES&aut_wt=1.0&obj_wt=1.0&ttl_wt=0.3&txt_wt=3.0&aut_wgt=YES&obj_wgt=YES&ttl_wgt=YES&txt_wgt=YES&ttl_sco=YES&txt_sco=YES&version=1 Full text] ;Websites
* [http://www.oulu.fi/~spaceweb/textbook/schumann.html Schumann resonance reference] from University of Oulu
* [http://nigec.ucdavis.edu/publications/ar/annual95/northeast/project07.html Schumann Resonance Measurements as a Sensitive Diagnostic for Global Change] (fixed)
* [http://147.175.143.11/ Schumann resonances, experimental results, electric component]
* [http://quake.geo.berkeley.edu/ncedc/em.intro.html Magnetic activity and Schumann resonance]
* [http://www.iihr.uiowa.edu/projects/schumann/Index.html Well illustrated study from the University of Iowa] explaining the construction of a ULF receiver for studying Schumann resonances.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Résonances de Schumann — Les résonances de Schumann sont un ensemble de pics spectraux dans le domaine d extrêmement basse fréquence (3 à 30 Hz) du champ électromagnétique terrestre. Ces résonances globales dans la cavité formée par la surface de la Terre …   Wikipédia en Français

  • Schumann — and Schuman may refer to the following. People Notable people with the surname Schuman or Schumann:* Allan L. Schuman, businessman * Clara Wieck Schumann (1819–1896), German pianist and composer * Conrad Schumann (1942 1998), East German soldier… …   Wikipedia

  • Schumann-Frequenz — Als Schumann Resonanz (nach Winfried Otto Schumann) bezeichnet man das Phänomen, dass elektromagnetische Wellen einer bestimmten Frequenz mit dem Umfang der Erde stehende Wellen bilden. Der mittlere Erdumfang beträgt 39.985.427 m ( …   Deutsch Wikipedia

  • Schumann-Resonanz — Räumliche Ausdehnung Spektrale Verteilung …   Deutsch Wikipedia

  • Erdresonanzfrequenz — Als Schumann Resonanz (nach Winfried Otto Schumann) bezeichnet man das Phänomen, dass elektromagnetische Wellen einer bestimmten Frequenz mit dem Umfang der Erde stehende Wellen bilden. Der mittlere Erdumfang beträgt 39.985.427 m (am …   Deutsch Wikipedia

  • Schumannresonanz — Als Schumann Resonanz (nach Winfried Otto Schumann) bezeichnet man das Phänomen, dass elektromagnetische Wellen einer bestimmten Frequenz mit dem Umfang der Erde stehende Wellen bilden. Der mittlere Erdumfang beträgt 39.985.427 m ( …   Deutsch Wikipedia

  • Резонанс Шумана — Электромагнитные колебания сверхнизкой частоты, возникающие в резонансной полости между поверхностью земли и ионосферой (резонанс Шумана) …   Википедия

  • WiTricity — WiTricity, a portmanteau for wireless electricity, is a term coined initially by Dave Gerding in 2005 and used by an MIT research team led by Prof. Marin Soljačić in 2007,cite web | url = http://web.mit.edu/newsoffice/2006/wireless.html | title …   Wikipedia

  • Ionosphere — The ionosphere is a part of the upper atmosphere, comprising portions of the mesosphere, thermosphere and exosphere, distinguished because it is ionized by solar radiation. It plays an important part in atmospheric electricity and forms the inner …   Wikipedia

  • Modra Observatory — Code 118   Location Modra, Slovakia …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”