Bieberbach conjecture

Bieberbach conjecture

In complex analysis, the Bieberbach conjecture or de Branges's theorem, asked by harvs|txt|first=Ludwig |last=Bieberbach|authorlink=Ludwig Bieberbach|year=1916 and proved by harvs|txt|authorlink=Louis de Branges de Bourcia|first=Louis |last=de Branges|year=1985, states a necessary condition on a holomorphic function to map the open unit disk of the complex plane injectively to the complex plane.

The statement concerns the Taylor coefficients "an" of such a function, normalized as is always possible so that "a"0 = 0 and "a"1 = 1. That is, we consider a holomorphic function of the form

:f(z)=z+sum_{ngeq 2} a_n z^n

which is defined and injective on the open unit disk (such functions are also called univalent or schlicht functions). The theorem then states that

:left| a_n ight| leq n quad mbox{for all }ngeq 2.,

chlicht functions

The normalizations

:"a"0 = 0 and "a"1 = 1

mean that

:"f"(0) = 0 and "f" '(0) = 1;

this can always be assured by a linear fractional transformation: starting with an arbitrary injective holomorphic function "g" defined on the open unit disk and setting

:f(z)=frac{g(z)-g(0)}{g'(0)}.,

Such functions "g" are of interest because they appear in the Riemann mapping theorem.

A family of schlicht functions are the rotated Köbe functions

:f_alpha(z)=frac{z}{(1-alpha z)^2}=sum_{n=1}^infty nalpha^{n-1} z^n

with α a complex number of absolute value 1. If "f" is a schlicht function and |"a""n"| = "n" for some "n" ≥ 2, then "f" is a rotated Köbe function.

The condition of de Branges' theorem is not sufficient to show the function is schlicht, as the function:f(z)=z+z^2 = (z+1/2)^2 - 1/4;shows: it is holomorphic on the unit disc and satisfies |"a""n"|≤"n" for all "n", but it is not injective since "f"(-1/2+"z") = "f"(-1/2-"z").

History

harvtxt|Bieberbach|1916 proved "a"2≤2, and stated the conjecture "a""n"≤"n".

harvtxt|Löwner|1923 proved "a"3≤3, using the Löwner equation. His work was used by most later attempts, and also used in the theory of Schramm-Loewner evolution.

harvtxt|Littlewood|1925|loc=theorem 20 proved that "a""n" ≤ "en" for all "n", showing that the Bieberbach conjecture is true up to a factor of "e" = 2.718... Several authors later reduced the constant "e". If "f"("z") = "z" +... is a schlicht function then φ("z") = "f"("z"2)1/2 is an odd schlicht function. harvs|txt|authorlink=Raymond Paley|last=Paley|author2-link=John Edensor Littlewood|last2=Littlewood|year=1932 showed that "b""k"≤14 for all "k". They conjectured that 14 can be replaced by 1 as a natural generalization of the Bieberbach conjecture. The Littlewood-Paley conjecture easily implies the Bieberbach conjecture using the Cauchy inequality, but it was soon disproved by harvtxt|Fekete|Szegö|1933, who showed there is an odd schlicht function with "b"5 = 1/2 + exp(−2/3) = 1.013..., and that this is the maximum possible value of "b"5. (Milin later showed that 14 can be replace by 1.14., and Hayman showed that the numbers "b""k" have a limit less than 1 if φ is not a Koebe function, so Littewood and Paley's conjecture is true for all but a finite number of coefficients of any function.) A weaker form of Littlwood and Paley's conjecture was found by harvtxt|Robertson|1936.The Robertson conjecture states that if :phi(z) = b_1z+b_3z^3+b_5z^5+cdotsis an odd schlicht function in the unit disk with "b"1=1 then for all positive integers "n", :sum_{k=1}^n|b_{2k+1}|^2le n.Robertson observed that his conjecture is still strong enough to imply the Bieberbach conjecture, and proved it for "n"=3. This conjecture introduced the key idea of bounding various quadratic functions of the coefficients rather than the coefficients themselves, which is equivalent to bounding norms of elements in certain Hilbert spaces of Schlicht function.

There were several proofs of the Bieberbach conjecture for certain higher valued of "n", in particular harvtxt|Garabedian|Schiffer|1955 proved "a"4≤4, harvtxt|Ozawa|1969 and harvtxt|Pederson|1968 proved "a"6≤6, and harvtxt|Pederson|Schiffer|1972 proved "a"5≤5.

harvtxt|Hayman|1955 proved that the limit of "a""n"/"n" exists, and has absolute value less than 1 unless "f" is a Koebe function. In particular this showed that for any "f" there are at most a finite number exceptions to the Bieberbach conjecture.

The Milin conjecture states that for each simple function on the unit disk, and for all positive integers "n", :sum^n_{k=1} (n-k+1)(k|gamma_k|^2-1/k)le 0 where the logarithmic coefficients γ"n" of "f" are given by :log(f(z)/z)=2 sum^infty_{n=1}gamma_nz^n. harvtxt|Milin|1977 showed using the Lebedev-Milin inequality that the Milin conjecture (later proved by de Branges) implies the Robertson conjecture and therefore the Bieberbach conjecture.

Finally harvtxt|De Branges|1985 proved "a""n"≤"n" for all "n".

de Branges's proof

The proof use a type of Hilbert spaces of entire functions. The study of these spaces grew into a sub-field of complex analysis and the spaces come to be called de Branges spaces and the functions de Branges functions. De Branges proved the stronger Milin conjecture harv|Milin|1971 on logarithmic coefficients. This was already known to imply the Robertson conjecture harv|Robertson|1936 about odd univalent functions, which in turn was known to imply the Bieberbach conjecture about simple functions harv|Bieberbach|1916. His proof uses the Loewner equation, the Askey-Gasper inequality about Jacobi polynomials, and the Lebedev-Milin inequality on exponentiated power series.

de Branges reduced the conjecture to some inequalities for Jacobi polynomials, and verified the first few by hand. Walter Gautschi verified more of these inequalities by computer for de Branges (proving the Bieberbach conjecture for the first 30 or so coefficients) and then asked Richard Askey if he knew of any similar inequalities. Askey pointed out that he and Gasper had proved the necessary inequalities a few year before, which allowed de Branges to complete his proof. The first version was very long and had some minor mistakes which caused some skepticism about it, but these were corrected with the help of members of the Steklov Mathematical Institute when de Branges visited in 1984.

De Branges proved the following result, which for ν=0 implies the Milin conjecture (and therefore the Bieberbach conjecture). Suppose that ν > − 3/2 and σ"n" are real numbers for positive integers "n" with limit 0 and such that: ho_n=frac{Gamma(2 u+n+1)}{Gamma(n+1)}(sigma_n-sigma_{n+1}) is non-negative, non-increasing, and has limit 0. Then for all Riemann mapping functions "F"("z") = "z" + ... univalent in the unit disk with:frac{F(z)^ u-z^ u} { u}= sum_{n=1}^{infty} a_nz^{ u+n}the maximinum value of :sum_{n=1}^{infty}( u+n)sigma_n|a_n|^2is achieved by the Koebe function "z"/(1−"z")2.

References

*Citation | author1-link=Richard Askey | last1=Askey | first1=Richard | last2=Gasper | first2=George | title=Positive Jacobi polynomial sums. II | url=http://www.jstor.org/stable/2373813 | id=MathSciNet | id = 0430358 | year=1976 | journal=American Journal of Mathematics | issn=0002-9327 | volume=98 | issue=3 | pages=709–737
*citation|first=L. |last=Bieberbach|title=Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln|journal= Sitzungsber. Preuss. Akad. Wiss. Phys-Math. Kl. |year=1916|pages=940–955
*
*Citation | last1=de Branges | first1=Louis | title=A proof of the Bieberbach conjecture | doi=10.1007/BF02392821 | id=MathSciNet | id = 772434 | year=1985 | journal=Acta Mathematica | issn=0001-5962 | volume=154 | issue=1 | pages=137–152
*Citation | last1=de Branges | first1=Louis | title=Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) | publisher=American Mathematical Society | location=Providence, R.I. | id=MathSciNet | id = 934213 | year=1987 | chapter=Underlying concepts in the proof of the Bieberbach conjecture | pages=25–42
*citation|id=MR|875226
title=The Bieberbach conjecture
series=Mathematical Surveys and Monographs
volume=21
title=Proceedings of the symposium on the occasion of the proof of the Bieberbach conjecture held at Purdue University, West Lafayette, Ind., March 11--14, 1985
editor1-last=Drasin|editor1-first=David |editor2-last= Duren|editor2-first=Peter |editor3-last=Marden|editor3-first= Albert
publisher=American Mathematical Society
place=Providence, RI
year=1986
pages=xvi+218}
isbn= 0-8218-1521-0

*citation|first=M.|last= Fekete |first2= G. |last2=Szegö
title= Eine Bemerkung Über Ungerade Schlichte Funktionen
journal= J. London Math. Soc.|year= 1933 |pages= 85-89| doi=10.1112/jlms/s1-8.2.85

*springer|id=B/b016150|first=E.G.|last= Goluzina|title=Bieberbach conjecture
*Citation | last1=Hayman | first1=W. K. | title=The asymptotic behaviour of p-valent functions | doi=10.1112/plms/s3-5.3.257 | id=MathSciNet | id = 0071536 | year=1955 | journal=Proceedings of the London Mathematical Society. Third Series | issn=0024-6115 | volume=5 | pages=257–284
*Citation | last1=Korevaar | first1=Jacob | title=Ludwig Bieberbach's conjecture and its proof by Louis de Branges | url=http://www.jstor.org/stable/2323021 | id=MathSciNet | id = 856290 | year=1986 | journal=The American Mathematical Monthly | issn=0002-9890 | volume=93 | issue=7 | pages=505–514
*citation|first=J. E. |last=Littlewood
title= On Inequalities in the Theory of Functions
journal= Proc. London Math. Soc.|year= 1925 |pages= 481-519| doi=10.1112/plms/s2-23.1.481

*citation|first1=J.E.|last1= Littlewood |first2= E. A. C.|last2= Paley
title= A Proof That An Odd Schlicht Function Has Bounded Coefficients
journal= J. London Math. Soc.|year= 1932 |pages= 167-169| doi=10.1112/jlms/s1-7.3.167

*citation|first=C. |last=Loewner|title=Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I.|journal=Math. Ann. |volume=89|year=1923|pages= 103--121|id= [http://www.emis.de/cgi-bin/JFM-item?49.0714.01 JFM 49.0714.01] |doi=10.1007/BF01448091
*Citation | last1=Milin | first1=I. M. | title=Univalent functions and orthonormal systems | publisher=American Mathematical Society | location=Providence, R.I. | id=MathSciNet | id = 0369684 | year=1977 (Translation of the 1971 Russian edition)
*Citation | last1=Robertson | first1=M. S. | title=A remark on the odd schlicht functions | url=http://www.ams.org/bull/1936-42-06/S0002-9904-1936-06300-7/ | doi=10.1090/S0002-9904-1936-06300-7 | year=1936 | journal=Bulletin of the American Mathematical Society | issn=0002-9904 | volume=42 | pages=366–370


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Conjecture de Bieberbach — La conjecture de Bieberbach était une conjecture mathématique qui exprime que toute fonction entière f injective dans le disque unité et s écrivant avait des coefficients satisfaisant à l inégalité . Cette conjecture, énoncée en 1916, a été… …   Wikipédia en Français

  • Conjecture —  Ne doit pas être confondu avec Conjoncture. Sur les autres projets Wikimedia : « Conjecture », sur le Wiktionnaire (dictionnaire universel) En mathématiques, une conjecture est une assertion pour laquelle on ne connaît pas… …   Wikipédia en Français

  • Ludwig Bieberbach — Ludwig Georg Elias Moses Bieberbach (December 4, 1886 ndash; September 1, 1982) was a German mathematician.BiographyBorn in Goddelau, near Darmstadt, he studied at Heidelberg and under Felix Klein at Göttingen, receiving his doctorate in 1910.… …   Wikipedia

  • Ludwig Bieberbach — Article connexe : Conjecture de Bieberbach. Ludwig Bieberbach (1930) Ludwig Bieberbach, né le 4 décembre 1886 à Goddelau (en), près de Francfor …   Wikipédia en Français

  • de Branges's theorem — In complex analysis, the Bieberbach conjecture or de Branges s theorem, posed by Ludwig Bieberbach (1916) and proven by Louis de Branges (1985), states a necessary condition on a holomorphic function to map the open unit disk of the… …   Wikipedia

  • Louis de Branges de Bourcia — (born August 21, 1932 in Paris, France) is a French American mathematician. He is the Edward C. Elliott Distinguished Professor of Mathematics at Purdue University in West Lafayette, Indiana. He is best known for proving the long standing… …   Wikipedia

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Louis de Branges de Bourcia — Louis de Branges Louis de Branges de Bourcia (* 21. August 1932 in Neuilly sur Seine, Paris) ist ein französischer Mathematiker. Inhaltsverzeichnis …   Deutsch Wikipedia

  • Lebedev–Milin inequality — In mathematics, the Lebedev–Milin inequality is any of several inequalities for the coefficients of the exponential of a power series, found by Lebedev and Milin (1965) and Isaak Moiseevich Milin (1977). It was used in the proof of the… …   Wikipedia

  • List of conjectures — This is an incomplete list of mathematical conjectures. They are divided into four sections, according to their status in 2007. See also: * Erdős conjecture, which lists conjectures of Paul Erdős and his collaborators * Unsolved problems in… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”