Vehicular communication systems

Vehicular communication systems

Vehicular Communication Systems are an emerging type of networks in which vehicles and roadside units are the communicating nodes; providing each other with information, such as safety warnings and traffic information. As a cooperative approach, vehicular communication systems can be more effective in avoiding accidents and traffic congestions than if each vehicle tries to solve these problems individually.

Generally vehicular networks are considered to contain two types of nodes; vehicles and roadside stations. Both are Dedicated Short Range Communications(DSRC) devices. DSRC works in 5.9GHz band with bandwidth of 75 MHz and approximate range of 1000m. [citeweb|title=Dedicated_Short_Range_Communications_(DSRC)_Home|url=http://www.leearmstrong.com/DSRC/DSRCHomeset.htm|publisher=leearmstrong.com|accessdate=2008-02-29] The network should support both private data communications and public (mainly safety) communications but higher priority is given to public communications. Vehicular communications is usually developed as a part of Intelligent Transport Systems (ITS). ITS seeks to achieve safety and productivity through intelligent transportation which integrates communication between mobile and fixed nodes. To this end ITS heavily relies on wired and wireless communications.

Motivation

The main motivation for vehicular communication systems is safety and eliminating the excessive cost of traffic collisions. According to World Health Organizations (WHO), road accidents annually cause approximately 1.2 million deaths worldwide; one fourths of all deaths caused by injury. Also about 50 million persons are injured in traffic accidents. If preventive measures are not taken road death is likely to become the third cause of death in 2020 from ninth place in 1990. [citeweb|coauthors=M. Peden, Richard Scurfield, D. Sleet, D. Mohan, A. A. Hyder, E. Jarawan, and C. Mathers|title=World report on road traffic injury prevention|publisher=World Health Organization|url=http://www.who.int/violence_injury_prevention/publications/road_traffic/world_report/summary_en_rev.pdf|accessdate=2008-02-29]

However the deaths caused by car crashes are in principal avoidable. US Department of Transport states that 21,000 of the annual 43,000 road accident deaths in the US are caused by roadway departures and intersection related incidents. [citeweb|title=Vehicle Infrastructure Integration (VII)|url=http://www.its.dot.gov/vii/|publisher=its.dot.gov|accessdate=2008-02-29] This number can be significantly lowered by deploying local warning systems through vehicular communications. Departing vehicles can inform other vehicles that they intend to depart the highway and arriving cars at intersections can send warning messages to other cars traversing that intersection. Studies show that in Western Europe a mere 5km/hr decrease in average vehicle speeds could result in 25% decrease in deaths. [citeweb|title=The world health report 2002 - Reducing Risks, Promoting Healthy Life|url=http://www.who.int/whr/2002/chapter4/en/index7.html|publisher=World Health Organization|accessdate=2008-02-29] Policing speed limits will be notably easier and more efficient using communication technologies.

Although the main advantage of vehicular networks is safety improvements, there are several other benefits. Vehicular networks can help avoiding congestions and finding better routes by processing real time data. This in return saves both time and fuel and has significant economical advantages.

Development

Vehicular communications is mainly motivated by the desire to implement Intelligent Transport Systems (ITS) because of their key benefits in safety and traveling ease. Several ITS institutions operate around the world to bring ITS concepts to real world. In the United States one of the main players is U.S. Department of Transportation (USDoT) . The federal DoT promotes ITS through investment in potentially high payoff initiatives. One of these major initiatives, Vehicle Infrastructure Integration (VII), seeks to increase safety by providing vehicle to vehicle and vehicle to roadside units communications through Dedicated Short Range Communications (DSRC).

Intelligent Transportation Society of America (ITSA), which has members from many diverse areas including private companies, universities, and governmental agencies, aims to improve cooperation among public and private sector organizations. ITSA summarizes its mission statement as “vision zero” meaning its goal is to reduce the fatal accidents and delays as much as possible.

Many universities are pursuing research and development of vehicular ad hoc networks. For example, University of California, Berkeley is participating in California Partners for Advanced Transit and Highways (PATH), [citeweb|title=UC_Berkeley-Audi_Pact_Places_Smart-Engine_Research_on_Bay_Area_Roads|url=http://www.path.berkeley.edu/|publisher=berkeley.edu|accessdate=2008-02-29] along with several other universities in California and elsewhere such as Stanford, UCLA, MIT, Texas A&M etc.

Car manufacturers and communication corporations are also investing in vehicular communications; among them are General Motors, Daimler Chrysler, Ford Motor Company, Siemens, Honda, Toyota, BMW, Mercedes-Benz and Mark IV.

Integrated automobile devices like OnStar have begun to make a presence on U.S. markets, with automobile manufacturers like GM offering them as options on their vehicles. Third party companies use these devices to offer services such as directions and emergency assistance to their customers. Although these devices may add an extra level of safety and peace of mind, they do not offer drivers the freedom to communicate with each other.

Technical Specifications

Two categories of draft standards provide outlines for vehicular networks. These standards constitute a category of IEEE standards for a special mode of operation of IEEE 802.11 for vehicular networks called Wireless Access in Vehicular Environments (WAVE).802.11p is an extension to 802.11 Wireless LAN medium access layer (MAC) and physical layer (PHY) specification. As of November 2006 Draft 1.3 of this standard is approved . 802.11p aims to provide specifications needed for MAC and PHY layers for specific needs of vehicular networks.1609 is a family of standards which deals with issues such as management and security of the network:

  • 1609.1 -Resource Manager: This standard provides a resource manager for WAVE, allowing communication between remote applications and vehicles.
  • 1609.2 -Security Services for Applications and Management Messages
  • 1609.3 -Networking Services: This standard addresses network layer issues in WAVE.
  • 1609.4 -Multi-channel Operation: This standard deals with communications through multiple channels.
The current state of these standards is trial-use.A vehicular communication networks which complies with the above standards supports both vehicular on-board units (OBU) and roadside units (RSU). RSU acts similar to a wireless LAN access point and can provide communications with infrastructure. Also, if required, RSU must be able to allocate channels to OBUs. There is a third type of communicating nodes called Public Safety OBU (PSOBU) which is a vehicle with capabilities of providing services normally offered by RSU. These units are mainly utilized in police cars, fire trucks, and ambulances in emergency situations.

As mentioned before DSRC provides several channels (seven 10 MHz channels in North America) for communications. Standards divide the channels into to categories: a control channel and service channels. Control channel is reserved for broadcasting and coordinating communications which generally takes place in other channels. Although DSRC devices are allowed to switch to a service channel, they must continuously monitor the control channel. There is no scanning and association as there is in normal 802.11. All such operations are done via a beacon sent by RSUs in the control channel. While OBUs and RSUs are allowed to broadcast messages in the control channels, only RSUs can send beacon messages.

In North America DSRC devices operate over seven 10MHz channels. Two of the channels are used solely for public safety applications which means that they can only be used for communications of message with a certain priority or higher.

Although 802.11p and 1609 drafts specify baselines for developing vehicular networks, many issues are not addressed yet and more research is required.

Applications

Vehicular communication networks will provide a wide range of applications with different characteristics. As these networks have not yet been implemented, a list of such applications is speculative and apt to change in the future (However safety, which is the main purpose of these networks, will most probably remain the most important applications). Furthermore some of these applications require technologies that are not available now. Ultimately we would like to delegate the full handling control of our cars to the vehicles themselves; somewhat similar to autopilot. The classifications of applications is not unique and many institutions involved in intelligent transportation systems propose their own set of applications and classifications. We classify the possible applications in the following categories:

Safety

Providing safety is the primary objective of vehicular communication networks. Vehicles who discover an imminent danger such as an obstacle inform others. Electronic sensors in each car can detect abrupt changes in path or speed and send an appropriate message to neighbors. Vehicles can notify close vehicles of the direction they are taking so the drivers can make better decisions; a more advanced version of turn signals. In more advanced systems, at intersections the system can decide which vehicle has the right to pass first and alert all the drivers. Some of the immediate applications are:
* Warnings on entering intersections
* Warnings on departing the highways
* Obstacle discovery
* Sudden halts warnings
* Reporting accidents
* Lane change warnings

Traffic management

Traffic management is utilized by authorities to ease traffic flow and provide a real time response to congestions. Authorities may change traffic rules according to a specific situation such as hot pursuits and bad weather. Applications include:
* Variable speed limits
* Adaptable traffic lights
* Accommodating ambulances, fire trucks, and police cars

Driver assistance systems

Roadside units can provide drivers with information which help them in controlling the vehicle. Even in the absence of RSUs, small transmitters may be able to issue warnings such as bridge or tunnel height or gate width:
* Parking a vehicle
* Cruise control
* Lane keeping assistance
* Roadsign recognition

Policing and enforcement

Police can use vehicular communications in several ways:
* Surveillance
* Speed limit warnings
* Restricted entries
* Pull-over commands

Pricing and payments

Electronic payment results in convenient payments and avoiding congestions caused by toll collection and makes pricing more manageable. For instance tolls can be variable for weekdays and weekends and during rush hours:
* Toll collecting
* Parking payments

Direction and route optimization

For reaching a destination there are usually many different routes. By collecting relevant information system can find the best paths in terms of travel time, expenses (such as toll and fuel), …

Travel-related information

In an unfamiliar town drivers may be assisted to find relevant information about available services:
* Maps
* Business locations
* Car services
* Gas stations

General information services

As with many other communication networks, vehicular networks can be used to obtain various content and services (not directly related to traveling). In this respect there are numerous applications. In the case that wireless vehicular networks are integrated to the Internet, which is very likely, virtually every application that is currently used in the Internet will find its way to vehicular networks as well. However applications with lower bandwidth requirements are likely to become widespread sooner. Some applications can be:
* Web surfing
* File downloads
* Email
* Gaming

Automated highways

Automated highway is not yet realizable but nevertheless is an important application. In these highways the vehicles are able to cruise without help of their drivers. This is done by cooperation between vehicles. For example each vehicle knows the speed and direction of travel of its neighboring vehicles through communication with them. The status is updated frequently; therefore each vehicle can predict the future up to some necessary time and is able to make appropriate decisions in appropriate time. Because automated highways are not limited by human response time, much higher speeds will be possible . This application is virtually impossible without utilizing vehicular networks.

See also

*Dedicated Short Range Communications
*Intelligent transportation system
*Mobile ad hoc network
*Radio
*Wireless LAN

References

External links

* [http://www.its.dot.gov/index.htm Research and Innovative Technology Administration (RITA), U.S. Department of Transportation (US DOT), ITS Joint Program Office Home]
* [http://www.leearmstrong.com/DSRC/DSRCHomeset.htm Dedicated Short Range Communications]
* [http://www.its-sti.gc.ca/en/menu.htm Intelligent Transportation Systems, Transport Canada]
* [http://www.path.berkeley.edu/ PATH project, University of California, Berkeley]
* [http://grouper.ieee.org/groups/802/11/Reports/tgp_update.htm Status of Project IEEE 802.11 Task Group p]
* [http://www.itsoverview.its.dot.gov/ US Department of Transportation, ITS application overview]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Vehicular ad-hoc network — (réseau Ad Hoc de véhicules), ou VANet, est une forme de Mobile Ad hoc NETworks (réseau mobile Ad Hoc), pour fournir des communications au sein d un groupe de véhicules à portée les uns des autres et entre les véhicules et les équipements fixes à …   Wikipédia en Français

  • Vehicular Ad-Hoc Network — (réseau Ad Hoc de véhicules), ou VANet, est une forme de Mobile Ad hoc NETworks (réseau mobile Ad Hoc), pour fournir des communications au sein d un groupe de véhicules à portée les uns des autres et entre les véhicules et les équipements fixes à …   Wikipédia en Français

  • Vehicular ad-hoc Network — A Vehicular Ad Hoc Network, or VANET, is a form of Mobile ad hoc network, to provide communications among nearby vehicles and between vehicles and nearby fixed equipment, usually described as roadside equipment.The main goal of VANET is providing …   Wikipedia

  • Advanced driver assistance systems — Advanced Driver Assistance Systems, or ADAS, are systems to help the driver in its driving process. When designed with a safe Human Machine Interface it should increase car safety and more generally road safety. Examples of such a system are: In… …   Wikipedia

  • Intelligent Vehicular ad-hoc Network — Intelligent vehicular ad hoc networks (InVANETs) use WiFi IEEE 802.11 and WiMAX IEEE 802.16 for easy and effective communication between vehicles with dynamic mobility. Effective measures such as media communication between vehicles can be… …   Wikipedia

  • military communication — Introduction       the transmission of information from reconnaissance and other units in contact with the enemy and the means for exercising command by the transmission of orders and instructions of commanders to their subordinates. As such, it… …   Universalium

  • Metro systems by annual passenger rides — Cities with metro systems The …   Wikipedia

  • Autonomous car — For the wider application of artificial intelligence to automobiles, see Vehicle Automation. Junior, a robotic Volkswagen Passat parked at Stanford University. An autonomous car, also known as robotic or informally as driverless, is an autonomous …   Wikipedia

  • Henryk Magnuski — Henryk Władysław Magnuski (1909 1978) was a Polish telecommunications engineer who worked for Motorola in Chicago. He was the inventor of one of the first Walkie Talkies and one of the authors of his company success in the fields of radio… …   Wikipedia

  • Intelligent transportation system — The term intelligent transportation system (ITS) refers to efforts to add information and communications technology to transport infrastructure and vehicles in an effort to manage factors that typically are at odds with each other, such as… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”