- Avogadro's law
[
Amedeo Avogadro ] Avogadro's law (Avogadro's Hypothesis, or Avogadro's Principle) is agas law named afterAmedeo Avogadro , who in1811 hypothesized that::"Equal volumes of ideal or perfect gases, at the same temperature and pressure, contain the same number of particles, or molecules."Thus, the number of
molecule s in a specificvolume ofgas is independent of the size ormass of the gas molecules when related to anideal gas approximate. It is very important to note that we apply an ideal gas or perfect gas definition (a hypothetical gas consisting of identical particles of zero volume, with no intermolecular forces, but the ability to interchange momentum with identical gas molecules) to a real gas such ashydrogen ornitrogen so we can statistically approximate the real gas behavior.As an example, equal volumes of molecular
hydrogen andnitrogen would contain the same number of molecules, as long as they are at the same temperature and pressure and observe ideal or perfect gas behavior. Whilst this is not the real world case, it is statistically very close.The minor aspect of the law can be stated mathematically as:
:.
where::"V" is the volume of the gas.:"n" is the number of moles in the gas.:"k" is a proportionality constant.
However, this above equation is just a trivial one, which is valid for all homogeneous substances, including homogeneous liquids and solids. This relation is easy to deduce; its validity was assumed before Avogadro's work.
The most important consequence of Avogadro's law is the following: The ideal gas constant has the same value for all gases. This means that the constant
:where::"p" is the
pressure of the gas:"T" is thetemperature of the gashas the same value for all gases, independent of the size or mass of the gas molecules. This statement is nontrivial, and it embodies Avogadro's ingenious insight into the nature of
ideal gas es. It took decades to prove Avogadro's law based on thekinetic theory of gases. Fact|date=February 2007One mole of an ideal gas occupies 22.4 liters (dm³) at STP, and occupies 24.45 litres at SATP (Standard Ambient Temperature and Pressure = 25 degrees C and 1 atm/101.3kPa). This volume is often referred to as the
molar volume of an ideal gas. Real gases may deviate from this value.The number of molecules in one mole is called "
Avogadro's number ": approximately 6.022×1023 particles per mole.Avogadro's law, together with the
combined gas law , forms theideal gas law .
Wikimedia Foundation. 2010.