Plasterwork refers to construction or ornamentation done with plaster, such as a layer of plaster on an interior wall or plaster decorative moldings on ceilings or walls. This is also sometimes called pargeting. The process of creating plasterwork, called plastering, has been used in building construction for centuries.


Plasterwork is one of the most ancient of handicrafts employed in connection with building operations, the earliest evidence showing that the dwellings of primitive man were erected in a simple fashion with sticks and plastered with mud. Soon a more lasting and sightly material was found and employed to take the place of mud or slime, and that perfection in the compounding of plastering materials was approached at a very remote period is made evident by the fact that some of the earliest plastering which has remained undisturbed excels in its scientific composition that which we use at the present day. The pyramids in Egypt contain plasterwork executed at least four thousand years ago, probably much earlier, and yet existing, hard and durable, at the present time. From recent discoveries it has been ascertained that the principal tools of the plasterer of that time were practically identical in design, shape and purpose with those used to day. For their finest work, the Egyptians used a plaster made from calcined gypsum just like plaster of Paris of the present time, and their methods of plastering on reeds resemble in every way our lath, plaster, float and set work. Hair was introduced to strengthen the stuff, and the whole finished somewhat under an inch thick. Very early in the history of Greek architecture we find the use of plaster of a fine white lime stucco, such has been found at Mycenae. The art had reached perfection in Greece more than five centuries before Christ, and plaster was frequently used to cover temples externally and internally, in some cases even where the building was of marble. It formed a splendid ground for decorative painting, which at this period of Grecian history had reached a very high degree of beauty.The temple of Apollo at Bassae, built of yellow sandstone about 470 BC, is an excellent example. Pavements of thick, hard plaster, stained with various pigments, were commonly laid in Greek temples. The Roman architect Vitruvius, in his book on architecture written about 16 BC, gives detailed information concerning the methods of making plaster and the manner of using it. "The lime used for stucco," he writes, "should be of the best quality and tempered a long time before it is wanted for use. The Greeks, besides making their stuccowork hard with thin coats of marble-dust plaster polished with chalk or marble, caused the plaster when being mixed to be beaten with wooden staves by a great number of men. Some persons cutting slabs of such plaster from ancient walls use them for tables and mirrors." Pliny the Elder tells us that, "No builder should employ lime which had not been slaked at least three years," and that, "The Greeks used to grind their lime very fine and beat it with pestles of wood." In England the walls of large houses and mansions were formerly plastered above the wainscoting and colored, while the ornamented plaster ceilings of the time of Henry VIII, Elizabeth and James I, are still the admiration of lovers of the art. Still earlier specimens of the plasterer's skill are extant in the pargeted and ornamented fronts of half-timbered houses. With regard to the smaller buildings, comprising small dwelling houses and cottages, the general application of plaster is of comparatively late date; for wainscoted walls and boarded ceilings or naked joists alone are frequently found in houses of not more than a century old both in England and on the Continent.

Tools and Materials

Comparatively few items are required for the more common plastering operations, although the craftsman well-versed in all disciplines of the trade will possess a wide range of tools and materials. These would typically include trowels, floats, hammers, screeds, a hawk, scratching tools, utility knives, laths, lath nails, lime, sand, hair, plaster of Paris, a variety of cements, and various ingredients to form color washes.

While most tools have remained unchanged over the centuries, developments in modern materials have led to some relatively recent changes. Trowels, originally constructed from steel, are now available in a polycarbonate material that allows the application of certain new, acrylic-based materials without staining the finish. Floats, traditionally made of timber (ideally straight-grained, knot-free, yellow pine), are often finished with a layer of sponge or expanded polystyrene.


Traditionally, plaster was laid onto laths, rather than board as is more commonplace nowadays. Wooden laths are narrow strips of straight-grained wood, generally pine, in lengths of from two to four or five feet to suit the distances at which the timbers of a floor or partition are set. Laths are about an inch wide, and are made in three thicknesses; single (1/8 to 3/16 inch thick), lath and a half (1/4 inch thick), and double (3/8-1/2 inch thick). The thicker laths should be used in ceilings, to stand the extra strain, and the thinner variety in vertical work such as partitions, except where the latter will be subjected to rough usage, in which case thicker laths become necessary. Laths are usually nailed with a space of about 3/8 of an inch between them to form a key for the plaster. Laths were formerly all made by hand. A large quantity, however, are now made by machinery and are known as sawn laths, those made by hand being called rent or riven laths. Rent laths give the best results, as they split in a line with the grain of the wood, and are stronger and not so liable to twist as machine-made laths, some of the fibers of which are usually cut in the process of sawing.

Laths must be nailed so as to break joint in bays three or four feet wide with ends butted one against the other. By breaking the joints of the lathing in this way, the tendency for the plaster to crack along the line of joints is diminished and a better key is obtained. Every lath should be nailed at each end and wherever it crosses a joist or stud. All timbers over three inches (76 mm) wide should be counter-lathed, that is, have a fillet or double lath nailed along the centre upon which the laths are then nailed. This is done to preserve a good key for the plaster. Walls liable to damp are sometimes battened and lathed in order to form an air cavity between the damp wall and the plastering.

Lathing in metal, either in wire or in the form of perforated galvanised sheets, is now extensively used on account of its fireproof and lasting quality. There are very many kinds of this material in different designs under various patents, the best known in England being the Jhilmil, the Bostwick, Lathing, and Expanded Metal lathing. The two last-named are also widely used in America. Lathing nails are usually of iron, cut, wrought or cast, and in the better class of work they are galvanized to prevent rusting. Zinc nails are sometimes used, but are costly.


The lime principally used for internal plastering is that calcined from chalk, oyster shells or other nearly pure limestone, and is known as fat, pure, chalk or rich lime. Hydraulic limes are also used by the plasterer, chiefly for external work. Perfect slaking of the calcined lime before being used is very important as, if used in a partially slaked condition, it will "blow" when in position and blister the work. Lime should therefore be run as soon as the building is begun, and at least three weeks should elapse between the operation of running the lime and its use.


Hair is used in plaster as a binding medium, and gives tenacity to the material. Traditionally horses' hair was the most commonly-used binder, as it was easily available before the proliferation of the motor-car. It functions in much the same way as the strands in fiberglass resin, by controlling and containing any small cracks within the mortar while it dries or when it is subject to flexing. Ox-hair, which is sold in three qualities, is now the kind usually specified; but horsehair, which is shorter, is sometimes substituted or mixed with the ox-hair in the lower qualities. Good hair should be long, strong, and free from grease and dirt, and before use must be well beaten to separate the lumps. In America, goats' hair is frequently used, though it is not so strong as ox-hair. The quantity used in good work is one pound of hair to two or three cubic feet of coarse stuff.

Manila hemp fiber has been used as a substitute for hair. As a result of experiments to ascertain its strength as compared with Substitutes that of other materials, it was found that plaster for hair slabs made with Manila hemp fiber broke at convert|195|lb|abbr=on, plaster mixed with Sisal hemp at convert|150|lb|abbr=on, jute at convert|145|lb|abbr=on, and goats' hair at convert|144|lb|abbr=on.Fact|date=April 2008 Another test was made in the following manner. Two barrels of mortar were made up of equal proportions of lime and sand, one containing the usual quantity of goats' hair, and the other Manila fiber. After remaining in a dry cellar for nine months the barrels were opened. It was found that the hair had been almost entirely eaten away by the action of the lime, and the mortar consequently broke up and crumbled quite easily. The mortar containing the Manila hemp, on the other hand, showed great cohesion, and required some effort to pull it apart, the hemp fiber being apparently quite uninjured.Fact|date=April 2008

Sawdust has been used as a substitute for hair and also instead of sand as an aggregate. It will enable mortar to stand the effects of frost and rough weather. It is useful sometimes for heavy cornices and similar work, as it renders the material light and strong. The sawdust should be used dry.


For fine plasterer's sand-work, special sands, not hitherto referred to, are used, such as silver sand, which is used when a light color and fine texture are required. In England this fine white sand is procured chiefly from Leighton Buzzard. For external work Portland cement is undoubtedly the best material on account of its strength, durability, and weather resisting External properties. The first coat or rendering is from 1/2 to 3/4 inches thick, and is mixed in the proportions of from one part of cement to two of sand to one part to five of sand. The finishing or setting coat is about 3/16 inches thick, and is worked with a hand float on the surface of the rendering, which must first be well wetted.

External Plastering

Stucco is a term loosely applied to nearly all kinds of external plastering, whether composed of lime or of cement. At the present time it has fallen into disfavor, but in the early part of the 19th century a great deal of this work was done. The principal varieties of stucco are common, rough, trowelled and bastard. Cement has largely superseded lime for this work. Common stucco for external work is usually composed of one part hydraulic lime and three parts sand. The wall should be sufficiently rough to form a key and well wetted to prevent the moisture being absorbed from the plaster.

Rough stucco is used to imitate stonework. It is worked with a hand float covered with rough felt, which forms a sand surface on the plaster. Lines are ruled before the stuff is set to represent the joints of stonework. Trowelled stucco, the finishing coat of this work, consists of three parts sand to two parts fine stuff. A very fine smooth surface is produced by means of the hand float. Bastard stucco is of similar composition, but less labor is expended on it. It is laid on in two coats with a skimming float, scoured off at once, and then trowelled. Colored stucco: lime stucco may be executed in colors, the desired tints being obtained by mixing with the lime various oxides. Black and grays are obtained by using forge ashes in varying proportions, greens by green enamel, reds by using litharge or red lead, and blues by mixing oxide or carbonate of copper with the other materials.

Roughcast or pebbledash plastering is a rough form of external plastering in much use for country houses. In Scotland it is termed "harling". It is one of the oldest forms of external plastering. In Tudor times it was employed to fill in between the woodwork of half-timbered framing. When well executed with good material this kind of plastering is very durable. Roughcasting is performed by first rendering the wall or laths with a coat of well-haired coarse stuff composed either of good hydraulic lime or of Portland cement. This layer is well scratched to give a key for the next coat, which is also composed of coarse stuff knocked up to a smooth and uniform consistency. While this coat is still soft, gravel, shingle or other small stones are evenly thrown on with a small scoop and then brushed over with thin lime mortar to give a uniform surface. The shingle is often dipped in hot lime paste, well stirred up, and used as required.

Sgraffito (scratched ornament)

Sgraffito is the name for scratched ornament in plaster. Scratched ornament is the oldest form of surface decoration, and at the present day it is much used on the continent of Europe, especially in Germany and Italy, in both external and internal situations. Properly treated, the work is durable, effective and inexpensive. The process is carried out in this way: A first coat or rendering of Portland cement and sand, in the proportion of one to three, is laid on about an inch thick; then follows the color coat, sometimes put on in patches of different tints as required for the finished design. When this coat is nearly dry, it is finished with a smooth-skimming, 1/12 to 1/8 inches thick, of Parian, selenitic or other fine cement or lime, only as much as can be finished in one day being laid on. Then by pouncing through the pricked cartoon, the design is transferred to the plastered surface. Broad spaces of background are now exposed by removing the finishing coat, thus revealing the colored plaster beneath, and following this the outlines of the rest of the design are scratched with an iron knife through the outer skimming to the underlying tinted surface.

Sometimes the coats are in three different colors, such as brown for the first, red for the second, and white or grey for the final coat. The pigments used for this work include Indian red, Turkey red, Antwerp blue, German blue, umber, ochre, purple brown, bone black or oxide of manganese for black. Combinations of these colors are made to produce any desired tone. Lime plastering is composed of lime, sand, hair and water in proportions varying according to the nature of the work to be done. In all cases good materials, well mixed and skillfully applied, are essential to a perfect result.


Plaster or render that is applied to external brickwork on dwellings or commercial buildings can be one or two coats in Western Australia. Mostly clay bricks are used sometimes concrete bricks or concrete tilt panels.Materials used are commonly sand of a light yellow colour with little clay content with fine to coarse grains or sand.Sand finish is the common term used for external render and may be one or two coats the better being two coat as it gives a more consistent finish and less chance of becoming drummy or cracking.In two coat render a base coat is applied with a common mix of five parts sand to one part cement and one part dehydrated lime and water to make a consistent mortar.Render is applied using a hawk and trowel and pushed on about 12 mm thick to begin.Most plasterers use a tbar to screed of walls until it is plumb straight and square.Scratching the wall after screeding is complete is a good idea to give key to second coat.An old saw can be used or maybe just get some tin and cut angles and use on wall.The second can be slightly weaker or the same 5/1/1 and maybe a water proofer in the mix added in the water to minimize effloresence (rising of salts) Some plasterers used lime putty in second coat instead of dehydrated lime in the render.The mortar is applied to about 5 mm thick and when the render hardens is screeded off straight. A wood float or plastic float is used to rub down the walls. Water is splashed on walls and immediately rubbing the float in a circular or figure 8 motion.After the work area is all floated, the finishing with a sponge using the same method as floating with wood float. Bringing sand to the surface. most plasterers use a hose with a special nozzle with a fine mist spray to dampen walls when rubbing up(using a wood float to bring a consistent finish) This method using a hose brings a superior finish and more consistent in colour as there is more chance in catching the render before it has a chance to harden too much.

Plaster is applied in successive coats or layers on walls or lathing and gains its name from the number of these coats. One coat work is the coarsest and cheapest class of plastering, and is limited to inferior buildings, such as outhouses, where merely a rough coating is required to keep out the weather and draughts. This is described as render on brickwork, and lath and lay or lath and plaster one coat on studding. Two-coat work is often used for factories or warehouses and the less important rooms of residences. The first coat is of coarse stuff finished fair with the darby float and scoured. A thin coat of setting stuff is then laid on, and trowelled and brushed smooth. Two-coat work is described as render and set on walls, and lath, plaster and set, or lath, lay and set on laths.

Three-coat work is usually specified for all good work. It consists, as its name implies, of three layers of material, and is described as render, float and set on walls and lath, plaster, float and set, or lath, lay, float and set, on lathwork. This makes a strong, straight, sanitary coating for walls and ceilings. The process for three coat work is as follows: For the first coat a layer of well-haired coarse stuff, about 1 inch thick, is put on with the laying trowel. This is termed "pricking up" in London, and in America "scratch coating". It should be laid on diagonally, each trowelful overlapping the previous one. When on laths the stuff should be plastic enough to be worked through the spaces between the laths to form a key, yet so firm as not to drop off. The surface while still soft is scratched with a lath to give a key for the next coat, which is known as the second or "floating coat", and is 1/4 to 3/8 inches thick. In Scotland this part of the process is termed "straightening" and in America "browning", and is performed when the first coat is dry, so as to form a straight surface to receive the finishing coat. Four operations are involved in laying the second coat, namely, forming the screeds; filling in the spaces between the screeds; scouring the surface; keying the face for finishing. Wall screeds are plumbed and ceiling screeds leveled. Screeds are narrow strips of plastering, carefully plumbed and leveled, so as to form a guide upon which the floating rule is run, thus securing a perfectly horizontal or vertical surface, or, in the case of circular work, a uniform curve. The filling in, or flanking, consists of laying the spaces between the screeds with coarse stuff, which is brought flush with the level of the screeds with the floating rule.

The scouring of the floating coat is of great importance, for it consolidates the material, and, besides hardening it, prevents it from cracking. It is done by the plasterer with a hand float that he applies vigorously with a rapid circular motion, at the same time sprinkling the work with water from a stock brush in the other hand. Any small holes or inequalities are filled up as he proceeds. The whole surface should be uniformly scoured two or three times, with an interval between each operation of from six to twenty-four hours. This process leaves the plaster with a close-grained and fairly smooth surface, offering little or no key to the coat that is to follow. To obtain proper cohesion, however, a roughened face is necessary, and this is obtained by keying the surface with a wire brush or nail float, that is, a hand float with the point of a nail sticking through and projecting about 1/8 inch; sometimes a point is put at each corner of the float. After the floating is finished to the walls and ceiling, the next part of internal plastering is the running of the cornice, followed by the finishing of the ceiling and walls. The third and final coat is the setting coat, which should be about 1/8 inch thick. In Scotland it is termed the "finishing coat", and in America the "hard finish coat" or "putty coat". Considerable skill is required at this juncture to bring the work to a perfectly true finish, uniform in color and texture. Setting stuff should not be applied until the floating is quite firm and nearly dry, but it must not be too dry or the moisture will be drawn from the setting stuff. The coarse stuff applied as the first coat is composed of sand and lime, usually in proportions approximating to two to one, with hair mixed into it in quantities of about a pound to two or three cubic feet of mortar. It should be mixed with clean water to such a consistency that a quantity picked up on the point of a trowel holds well together and does not drop.

Floating stuff is of finer texture than that used for pricking up, and is used in a softer state, enabling it to be worked well into the keying of the first coat. A smaller proportion of hair is also used. Fine stuff mixed with sand is used for the setting coat. Fine stuff, or lime putty, is pure lime that has been slaked and then mixed with water to a semi-fluid consistency, and allowed to stand until it has developed into a soft paste. For use in setting it is mixed with fine washed sand in the ratio of one to three. For cornices and for setting when the second coat is not allowed time to dry properly, a special compound must be used. This is often gauged stuff, composed of three or four parts of lime putty and one part of plaster of Paris, mixed up in small quantities immediately before use. The plaster in the material causes it to set rapidly, but if it is present in too large a proportion the work will crack in setting. The hard cements used for plastering, such as Parian, Keene's, and Martin's, are laid generally in two coats, the first of cement and sand 1/2 to 3/4 inches in thickness, the second or setting coat of neat cement about 1/8 inch thick. These and similar cements have gypsum as a base, to which a certain proportion of another substance, such as alum, borax or carbonate of soda, is added, and the whole baked or calcined at a low temperature. The plaster they contain causes them to set quickly with a very hard smooth surface, which may be painted or papered within a few hours of its being finished.


Plain, or unenriched, moldings are formed with a running mold of zinc cut to the required profile. Enrichments may be moldings added after the main outline molding is set, and are cast in molds made of gelatin or plaster of Paris. For a cornice molding two running rules are usual, one on the wall, the other on the ceiling, upon which the mold is worked to and fro by one workman, while another man roughly lays on the plaster to the shape of the molding. The miters at the angles are finished off with joint rules made of sheet steel of various lengths, three or four inches (102 mm) wide, and about one-eighth inch thick, with one end cut to an angle of about 30°. In some cases the steel plate is let into a stock or handle of hardwood.


Cracks in plastering may be caused by settlement of the building, and by the use of inferior materials or by bad workmanship, but cracks, apart from these causes, and taking the materials and labor as being of the best, cracks may yet ensue by the too fast drying of the work, caused through the laying of plaster on dry walls which suck from the composition the moisture required to enable it to set, by the application of external heat or the heat of the sun, by the laying of a coat upon one which has not properly set, the cracking in this case being caused by unequal contraction, or by the use of too small a proportion of sand. Building and background movement even on a settled building can contribute to cracking in plaster work.

Traditionally, crack propagation was arrested by stirring chopped horse hair thoroughly into the plaster mix.


For partitions and ceilings, plaster slabs are now in very general use when work has to be finished quickly. For ceilings they require simply to be nailed to the joists, the joints being made with plaster, and the whole finished with a thin setting coat. In some cases, with fireproof floors, for instance, the slabs are hung up with wire hangers so as to allow a space of several inches between the soffit of the concrete floor and the ceiling. For partitions the slabs frequently have the edges tongued and grooved to form a better connection; often, too, they are holed through vertically, so that, when grouted in with semi-fluid plaster, the whole partition is bound together, as it were, with plaster dowels. Where very great strength is required the work may be reinforced by small iron rods through the slabs. This forms a very strong and rigid partition which is at the same time fire-resisting and of lightweight, and when finished measures only from two to four inches (102 mm) thick.

The slabs may be obtained either with a keyed surface, which requires finishing with a setting coat when the partition or ceiling is in position, or a smooth finished face, which may be papered or painted immediately the joints have been carefully made. Partitions are also formed with one or other of the forms of metal lathing previously referred to, fixed to iron uprights and plastered on both sides. So strong is the result that partitions of this class only two or three inches (76 mm) thick were used for temporary cells for prisoners at Newgate Gaol during the rebuilding of the new sessions house in the Old Bailey, London.

Fibrous plaster

Fibrous plaster is given by plasterers the suggestive name "stick and rag", and this is a rough description of the material, for it is Fibrous composed of plaster laid upon a backing of canvas stretched on wood. It is much used for moldings, circular and enriched casings to columns and girders and ornamental work, which, being worked in the shop and then nailed or otherwise fixed in position, saves the delay often attendant upon the working of ornament in position. Desachy, a French modeler, took out in 1856 a patent for "producing architectural moldings, ornaments and other works of art, with surfaces of plaster," with the aid of plaster, glue, wood, wire, and canvas or other woven fabric. The modern use of this material may be said to have started then, but the use of fibrous plaster was known and practiced by the Egyptians long before the Christian era; for ancient coffins and mummies still preserved prove that linen stiffened with plaster was used for decorating coffins and making masks. Cennino Cennini, writing in 1437, says that fine linen soaked in glue and plaster and laid on wood was used for forming grounds for painting. Canvas and mortar were in general use in Great Britain up to the middle of the last century. This work is also much used for temporary work, such as exhibition buildings.

Pool plastering

Modern interior plastering

There are two main methods used in construction of the interior walls of modern homes. Those methods are either Drywall or Plaster. In drywall a specialized form of sheet rock known as "greenboard" (yclept because on the outer paper coating is greenish) is screwed onto the wall-frames of the home to form the interior walls. The place where the two edges of wallboards meet there is a seam. These seams are covered with mesh tape and then the seams and the screw heads are concealed with the drywall compound to make the wall seem as one uniform piece. Later this is painted or wallpapered over to hide the work. This process is typically called "Taping" and those who use drywall are known as "Tapers".

Veneer plastering differs from the drywall method in a number of ways. The two most notable differences is that a thin plaster coat covers the entire wall and not just the seams, and secondly the drywall compound is a thick paste where plaster method uses a great deal of water and is applied very wet. Other differences is that walls intended to be plastered are hanged with "Blueboard" (named as such for the industry standard of the outer paper being blue-grey in color). This type of sheet rock is designed to absorb some of the moisture of the plaster and allow it to cling better before it sets. Plastering is also a one-shot one coat application; Taping usually requires sanding and then adding an additional coat; since the compound shrinks as it dries. Plaster tends to cost more and takes longer to complete the work.

The Plasterer & Laborer

The plasterer usually shows up after the Hangers have finished building all the internal walls, by attaching blueboard over the frames of the house with screws. Typically during this stage the wiring of the house is finished but none of the wall plugs have been mounted, this causes the plasterer to use extension cords as well as hoses run from the basement to obtain water and power. The plasterer is usually a subcontracter working in crews that average about three veterans and one laborer. The job of the laborer is to setup ahead of and clean up behind the plasterers, so they can concentrate on spreading the "mud" on the walls. If the laborer is efficient and has free time during a "mix" he can opt to also act as an apprentice and is given tasks to help him learn the trade. Usually he is put in a small cramped closet that won't receive much lighting and encourage to try to finish the job on his own. This can be quite messy.

laborer's tasks

# Sweeping-- debris left on the floors from the "hanging" crew must be removed before floor paper can be set down and to remove any tripping hazards.
# covering the floors with tar or brown paper since plaster can stain or be hard to remove from subflooring plywood.
# Running hoses and extension cords and setting up job lights.
# covering all seams with meshtape as well as any large gaps around outlets caused by poor roto-zip work. Gouge out any bubble in the wallboard caused by broken sheetrock under the paper and cover the holes with meshtape. Remove any loose screws left from the hanger missing the underlying frame.
# Covering all windows and doors with plastic sheets and masking tape to protect the wood of their frames and save on cleaning. If any plumbing fixtures or wall plugs have been installed they are also covered, as well as the bathtubs and showers since trying to remove plaster from them can be laborious and possibly scratch them.
# Setting up for the next mix.-- As soon as the table is cleared he is given instructions of how many bags will be needed as well as the next room to be worked in. The table typically consists of folding legs upon witch is set a square board of wood and then covered in a plastic sheet upon which the plaster is placed in the center in a large pile.
# Mixing the product.-- The mixing barrel is usually pre-filled to a certain level with water; since it can take some time to fill. The amount of water is usually estimated (with a margin of error leaning towards too little). The amount of water required is obtained from the amount of bags planned to be mixed. The estimation is not difficult for an experienced plasterer; who knows how many sheets he can typically cover, and that one bag usually covers three sheets and 5 gallons of water is needed for one standard 50 pound bag. With a permanent crew that normally does the same amount per mix one can simply fill up the barrel to a known cut-off point.
# Once the Mix is set up and the plasterers are ready; they instruct the laborer to start dumping the bags in the water barrel, while intermittently running the mixing drill. Once all bags are in the barrel more water is slowly added until the plaster is of proper consistency and is then thoroughly mixed. Before the mixing is completed, a margin trowel (or margin for short) is scraped along the inside wall of the barrel in order to knock off clinging unmixed clumps (known as cutting in) to be furthered mixed until all is homogeneous. Care is taken not to take too long while mixing since as soon as the plaster hits the water; the race is on to get it onto the wall before it starts to set. "Most plasterers have their own notion of a perfect mix. Typically they don't want the mix so "soupy" that it runs off the table nor too thick. The best consistency is that of pudding or sloppy mud; so it spreads easily and evenly but allows a fair amount to be scooped up onto the trowel.
# While mixing the drill is brought up and down in order to drag the top of the mix down and ensure an even consistency throughout the mix. Care is taken not to allow the drills paddle to hit the bottom or sides of the barrel. this can scrape off plastic bits that end up in the mix. The drill can be quite heavy and the holder must wrestle against the torque of it, thus mixing can be fatiguing. Care must also be made not to lift the drill too high; this will cause a splattering mess. Care must also be taken not too immediately lift the drill after it stops, or the barrel will burp and send a glob of plaster straight into the drillers face.
# Shoveling the mix onto the table.-- Prudence must be exercised in order refrain from overfilling the table, since the plaster will slide off and make a terrible mess. Care must also be taken to keep the weight shifted towards the center, or the table can flip onto the floor. The mixing barrel must be emptied as soon as possible, as the plaster will set faster in the barrel then on the table. If this happens it makes cleanup labor intensive.
# Cleaning up the mix barrel.-- "This is the most important job of the laborer" . The cleaner must be diligent in removing all plaster remains from the mixing barrel before it hardens. this is done outside with a hose and nozzle. If any plaster remains they can contaminate the next mix with "rocks" that greatly vex the plasterers as they get dragged across the walls and the contamination causes the plaster to set much quicker.
# Final clean up.-- This includes rolling up all paper flooring in finished rooms. knocking the plaster out of plug outlet holes with a drywall hammer/hatchet. Taking down any masking tape and plastic. cleaning up any plaster that has splattered onto the floor etc. All debris is then usually placed in now empty plaster bags and thrown into the dumpster left by the contractor."All the listed tasks must me completed before the plasterers are ready to leave."

Plasterer's tasks

Normally the contractor has already supplied all the bags of Gypsum plaster that will be needed, as well as any external supply of water if the house is not yet connected. (Normally the type of plaster that is used is an industry standard called Uni-Kal. There is also another type not used as often called Kal-Kote; its finish is slightly different and not as bone white as Unical. The two products are distinguished by a color stripe across the top of the bag. Uni-Kal is rusty red, and Kal-Kote is purplish/maroon. The plastering crew needs to bring their own tools and equipment and sometimes supply their own bead.

"The Tasks that the plasterer is usually expected to accomplish".

*"Hang cornerbead" The plasterer must first staple Cornerbead onto every protruding corner of the house. Care is taken to make sure this makes the wall look straight and is more of a skill of the eye then anything else. "Bead" comes in many styles; Ranging from wire mesh attached by staples too heavier metal grades the need to be tacked on with nails. Plastic varieties also exist. The bead must be measured and cut to size; care is taken not to bend or warp it. In places where more then one corner meets; the bead's ends are cut at an angle and the 2 or more tips are placed as close together as allowable; touching but not overlapping. The bead is completely covered with plaster as well as the rest of the wall and the plaster also helps to hold it firm. The finished product leaves only a small exposed metal strip at the protrusion of the corner which gets covered when the wall is painted. This leaves a clean, straight looking corner.

* "Sets up his tools" The plasterer needs to fill a 5-gallon bucket partway with water. From this bucket he hangs his trowel or trowels and places into it various tools.

Normally a plasterer has one trowel for "laying on" (the process of placing mud onto the wall). Some then keep an older trowel that has a decent bend in it to be used for the purpose of "texturing"; if called for by the homeowner. A lay-on trowel tends to be too flat for this and the vacuum caused by the water can stick it to the wall, forcing him to tear it off and thus he has to rework the area. Finally, one may have a brand new trowel "not yet broken-in" which he will used for "grinding"; this is when the plaster is nearly hardened and he is smoothing out any bumps or filling in any small dips to make the wall look like a uniform sheet of glossy white plaster. Most plasterers have their own preference for the size of the trowel they use. some wield trowels as large as 20 inches in length but the norm seems to be a 16"x5". "From my experience the preferred brand is a Marshalltown stainless steel. They have a brassy luster to them and won't pit or rust if accidentally left in water overnight".

Into the bucket also goes a large brush used to splash water onto the wall and to clean his tools, a paint brush for smoothing corners, and a corner bird for forming corners ("though many share one good bird to keep the room harmonious").These tool buckets are first kept near the mix table and then as the plaster starts to set are moved closer to the wall that is being worked on. "Time becomes a big factor here as once the plaster starts to harden it will do so very rapidly and the plasterer has a small margin of error to get the wall smooth".

Onto the mixing table the plasterer usually sets his "hawk" so it will be handy when he needs to grab it and to keep dirt off of it. Any debris in the plaster can become a major nuisance.

* "Tops or bottom?" Plasterers will typically divide a room, (especially a large or high-ceilinged wall) into top and bottom. The one working on top will do from the ceilings edge to about belly height and work off of a milk crate for an convert|8|ft|m|sing=on ceiling, or work off stilts for 12-foot-high rooms. For cathedral ceilings or very high walls, staging is set up and one works topside, the others further below.

* "Clean up before they finish a job". Typically done with the laborer. No plaster globs left on the floors, walls or corner bead edges. (They will show up if painted and interfere with flooring and trim). Remove or neatly stack all trash.

*"Inspection"All rooms and walls are inspected for cracking and dents or scratches that may have been caused from others bumping into the walls. They are also inspected to make sure no bumps are left on the walls from splashed plaster or water. All rooms are checked to make sure all plaster is knocked out of the outlets so the electrician can install the sockets and to make sure no tools are left behind. This leaves the walls ready for the painters and finishers to come in and do their trade.

Interior plastering techniques


"The home owner and the plasterers boss will usually decide beforehand what styles they will use in the house".

Typically walls are smooth and sometimes ceilings. Usually a homeowner will opt to have the ceilings use a "texture" technique as it is much easier, faster, and thus cheaper than a smooth ceiling. The plasterer quotes prices based on techniques to be used and board feet to be covered to the contractor or homeowner before work begins. The board feet is obtained by the hangers or estimated by the head subcontractor by counting the wallboards that come in an industry standard of 8' to 12' in length. He then adds in extra expenses for soffits and cathedral ceilings. Typically if the ceiling is to be smooth it is done first; before the walls. If it is to be textured it is done after the walls. The reason for this is invariably when a ceiling is being worked on plaster will fall and splash onto the walls. However a texture mix doesn't need to be smoothed out when it starts to set; thus a retardant such as "Cream of tartar" or sugar can be used to prolong the setting time, and is easily scraped off the walls. Also since time is not as restraining of a factor on textured ceilings a large mix, or back-to-back mixes can be done and all ceilings covered at the same time. Another reason is that a bird is usually run along the top corner after doing a smooth ceiling. It is easier to maintain this edge by doing the wall last, but a textured ceiling normally doesn't need to be birded, only blended in with a very wet paint brush. In this case the wall is done first and the corner formed with the bird.
*"Scratching"The first thing the plasterer tends to do is go over all the mesh-taped seams of the walls he is about to cover; in a very thin swatch. The wallboard draws moisture out of this strip so when the plasterer goes over it again when doing the rest of the wall it will not leave an indented seam that needs further reworking. He then fills in the area near the ceiling so he will not have to stretch to reach it during the rest of the wall; And he forms the corner with his bird. This saves much needed time as this process is a race against the chemical reaction.
*"Laying on"From the Mix table the plasterer scoops some "mud" onto the center of his hawk with his trowel. Holding the hawk in his off-hand and his trowel in his primary the plasterer then scoops a bulging roll of plaster onto his trowel. this takes a bit of practice to master, especially with soupy mixes. Then holding the trowel parallel to the wall and at a slight angle of the wrist he tries to uniformly roll the plaster onto the wall. In a manner similar to a squeegee. He starts about an inch above the floor and works his way upwards to the ceiling. Care is taken to be uniform as possible as it helps in the finishing phase.
*"Setting"Sometimes an accelerant will be added to a mix to hasten the time delay from the initial mixing phase to when the plaster starts to set.Once the plaster is on the wall and starts to set; this can be determined by the table that sets first. the plasterer gingerly sprinkles water onto the wall this helps to stall the setting and to create a slip. he then uses his trowel and often a wetted felt brush held in the opposite hand and lightly touching the wall ahead of the trowel to work this slip into any small gaps (known as "catfaces") in the plaster as well as smooth out the rough lay-on and flatten any air bubbles that formed during setting. This is a crucial time because if the wall gets too hard it is nearly impossible to fill in and gaps as the slip will no longer set with the wall and will instead just dry and fall out. This leads to the need of what is called "Grinding" as one must go over the hard wall again and again trying to smooth out the hardened wall and any major catfaces must be filled in with a contour putty, joint compound, or reworked by blending in a fresh, thin coat. The finished wall will look glossy, Uniformly flat and is smooth to the touch. After a few days it will become chalky white and can then be painted over.
*"Mix"From the time the bags are dumped into the barrel to when the wall is completely set is called a mix. Varying on the technique used and whether accelerant or retardant is added, a mix typically lasts about 2 hours. The final moments are the most frantic if it is smooth or if the mix sets quicker then anticipated. If this happens it is said the mix has "snapped" and is normally due to using old product or various types of weather. Normally only 3 or 4 mixes are done in a day as plastering is very tiring and not as effective under unnatural lighting in the months with early dusk.
*"Seasons"Plastering is done year round but unique problems may arise from season to season. In the summer the heat tends to cause the plaster to set faster. The plaster also generates its own heat and houses can become quite hellish. Typically the plaster crew will try to arrive at the house well before dawn. In winter months short days causes the need of artificial lighting. At certain angles these lights can make even the smoothest wall look like the surface of the moon. Another dilemma in the winter months is needing to use propane jet heaters (which can stain the plaster yellowish but does not otherwise hurt it), not just to keep the plasterers warm but to also prevent the water in the mix from freezing and generating ice crystals before the plaster has time to set. Also if the water hose is not thoroughly drained before leaving it can freeze over night and be completely stopped up in the morning.


Texturing is usually reserved for closets, ceilings and garage walls.

Typically a retarding agent is added to the mix. this is normally "Cream of Tartar (or "Dope" in the plasterer's jargon) and care must be taken with the amount added. Too much and the mix may never set at all. However the amount used is often estimated; much the way one adds a dash of salt to a recipe. you add a small scoop of retarder, dependent on the size of the mix. Retardant is added so that large mixes can be made since the texture technique doesn't require the person to wait until it starts to set before working it.

The lay-on phase is the same as smooth but it is added with a thicker coat. Once the coat is on uniformly the plasterer then goes back and birds his corners. Staying away from the corner he then gets a trowel with a nice banana curve in it and starts to run it over the wall in a figure eight or Ess pattern, making sure to cross all areas at least once. He adds a little extra plaster to his trowel if needed. The overall effect is layers of paint-like swaths over the whole of the ceiling or wall. He can then just walk away and let it set with care taken not too leave any globs and to make sure the corners look smooth and linear. If a wall is to be smooth and the ceiling textured, typically the wall is done first, then the ceiling after the wall has set. Instead of rebirding the ceiling (which would have been done when the wall was laid on), a clean trowel is held against the wall and its corner is run along the ceiling to "cut it in" and clean the wall at the same time. This line is then smoothed with a paintbrush to make the transition seamless.


"The sponge (technically called a float), has a rectangular form and rough surface. it is fixed to a backing with a central handhold and is roughly the size of a standard trowel."

Sponge is a variant texture technique and used normally on ceilings and sometimes in closets. Typically when using a sponge; sand is added to the mix and the technique is called sand-sponge. Care must be taken not to stand directly under your trowel when doing this as it is very, very unpleasant, and dangerous to get a grain of sand in your eye; which is compounded by the irritation from the lime as well. This combination can easily scratch the eye.

The lay-on and mix is the same as with regular texturing. however after a uniform and smooth coat is placed on the ceiling and the edges are cut in; a special rectangular sponge with a handle is run across the ceiling in overlapping and circular motions. This takes some skill and practice to do well. The overall look is a fishscale type pattern on the ceiling, closet wall, etc. Even though retarder is typically used; care must be taken to clean out the sponge thoroughly when finished as any plaster that hardens inside it will be impossible to remove.


Stilts are often required to plaster most ceilings and it is typically harder to lay-on and work then walls. For short ceilings one can also work off of milk crates. The difficulty of working upside down often results in plaster bombs splattering on the floors, walls and people below. This is why smooth ceilings that use no retardant or sometimes accelerant are done before the walls. Retarded plaster can easily be scrapped off a smooth plaster wall when wet. Any splatters from a smooth ceiling can easily be scraped off bare blueboard but not from an already plastered wall. Care must be taken when doing a ceiling not to look up if you are standing under your trowel or another plasterer. The general difficulty of working a smooth ceiling fetches a higher cost. The technique is the same as a smooth wall but at an awkward angle for the plasterer.

Tools of the trade

*corner bird
*Drywall Hammer or Drywall Hatchet -- use to clear plaster globs out of plugholes.
*extension cords
*5 gallen buckets-for tools, washing, steps/stools, for small patch mixes, lugging plaster onto staging etc.
*Floor scraper -- "Optional"
*Halogen work lights
*Hawk (plasterer's tool)
*High RPM mixing drill with appropriate paddle
*ladders and a few 6x4 planks-"supplemental"
*masking tape -- for window panes and door jams
*mesh tape--multiple rolls
*Milk crate -- used to store tools and as steps
*Multi cord outlet
*Pipe Staging-"supplemental"
*Plastic 50 gallon drum-For mixing, often gotten at car washes
*putty knife --"supplemental"
*Scoop -"supplemental"-- to remove plaster from a bucket
*Shovel -- short handled, is used to load the table with plaster mud.
*soft bristle paintbrush -- for smoothing edges and corners
*Trowels--various sizes and levels of breaking-in (cost avg $60)
*Margin Trowel or margin for short-- for edging the mix barrel
*sponge (tool)/Float
*Staple gun -- for corner bead
*table stand and a table board
*tar paper or brown paper rolls -- tar paper offers more water protection and is a bit more resilient but is costlier to use.
*roll of plastic sheeting
*Uni-Kal -- a gypsum based plaster that comes in 50 pnd bags.
*Kal-Kote -- an alternate brand
*DIAMOND Basecoat -- used in cases where cracking is suspected to occur
*Utility knife--to cut plastic sheeting and floor paper
*Water hose and nozzle
*Water brush--large
*Work radio -- A must


In England, fine examples of plasterwork interiors of the early modern period can be seen at Chastleton House, (Oxfordshire), Knole House, (Kent), Wilderhope (Shropshire), Speke Hall, (Merseyside), and Haddon Hall, (Derbyshire). Some examples of outstanding extant historical plasterwork interiors are found in Scotland, where the three finest specimens of interior plasterwork are elaborate decorated ceilings from the early 1600s at Muchalls Castle, Glamis Castle and Craigievar Castle, all of which are in the northeast region of that country. The craft or modelled plasterwork, inspired by the style of the early modern period, was revived by the designers of the Arts and Crafts movement in late-19th- and early-20th-century England. Notable practitioners were Ernest Gimson, his pupil Norman Jewson, and George P. Bankart, who published extensively on the subject. Examples are preserved today at Owlpen Manor and Rodmarton Manor, both in the Cotswolds. Modern ornate fibrous plasterwork by the specialist company of Clark & Fenn can be seen at Theatre Royal, Drury Lane, the London Palladium, Grand Theatre Leeds, Somerset House, The Plaisterers' Hall and St. Clement Danes

See also

* Cast Courts (Victoria and Albert Museum)
* Gypsum board
* Pargeting
* Plaster
* Roughcast
* Stucco


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Plasterwork — Plas ter*work , n. Plastering used to finish architectural constructions, exterior or interior, especially that used for the lining of rooms. Ordinarly, mortar is used for the greater part of the work, and pure plaster of Paris for the moldings… …   The Collaborative International Dictionary of English

  • plasterwork — [plas′tər wʉrk΄] n. a finish or decorative work done by plastering …   English World dictionary

  • plasterwork — plas|ter|work [ plæstərwɜrk ] noun uncount the dry PLASTER on ceilings and walls, especially decorations made in PLASTER: ornate plasterwork …   Usage of the words and phrases in modern English

  • plasterwork — UK [ˈplɑːstə(r)ˌwɜː(r)k] / US [ˈplæstərwɜrk] noun [uncountable] the dry plaster on ceilings and walls, especially decorations made in plaster ornate plasterwork …   English dictionary

  • plasterwork — noun Date: 1600 plastering often ornate in design used to finish architectural constructions …   New Collegiate Dictionary

  • plasterwork — /plas teuhr werrk , plah steuhr /, n. Building Trades. finish or ornamental work done in plaster. [1590 1600; PLASTER + WORK] * * * …   Universalium

  • plasterwork — noun Architectural work executed in plaster …   Wiktionary

  • plasterwork — n. decorative work made from plaster, application and/or sculpting of plaster …   English contemporary dictionary

  • plasterwork — noun plaster as part of the interior of a building, especially when formed into decorative shapes …   English new terms dictionary

  • plasterwork — plas•ter•work [[t]ˈplæs tərˌwɜrk, ˈplɑ stər [/t]] n. bui finish or ornamental work done in plaster • Etymology: 1590–1600 …   From formal English to slang

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”