- Pseudocode
Pseudocode is a compact and informal high-level description of a
computer programming algorithm that uses the structural conventions of someprogramming language , but is intended for human reading rather than machine reading. Pseudo-code typically omits details that are not essential for human understanding of the algorithm, such asvariable declaration s, system-specific code andsubroutines . The programming language is augmented withnatural language descriptions of the details, where convenient, or with compact mathematical notation. The purpose of using pseudocode is that it may be easier for humans to understand than conventional programming language code, and that it may be a compact and environment-independent description of the key principles of an algorithm. It is commonly used in textbooks and scientific publications that are documenting various algorithms, and also in planning of computer program development, for sketching out the structure of the program before the actual coding takes place.No standard for pseudocode syntax exists, as a program in pseudocode is not an executable program. Pseudocode resembles, but should not be confused with, skeleton programs including
dummy code , which can be compiled without errors.Flowchart s can be thought of as a graphical alternative to pseudocode.Application
Textbooks and
scientific publication s related tocomputer science andnumerical computation often use pseudocode in description of algorithms, so that all programmers can understand them, even if they do not all know the same programming languages. In textbooks, there is usually an accompanying introduction explaining the particular conventions in use. The level of detail of such languages may in some cases approach that of formalized general-purpose languages — for example, Knuth's seminal textbook "The Art of Computer Programming " describes algorithms in a fully-specifiedassembly language for a non-existentmicroprocessor .A
programmer who needs to implement a specific algorithm, especially an unfamiliar one, will often start with a pseudocode description, and then simply "translate" that description into the target programming language and modify it to interact correctly with the rest of the program. Programmers may also start a project by sketching out the code in pseudocode on paper before writing it in its actual language, as atop-down structuring approach.yntax
As the name suggests, pseudocode generally does not actually obey the
syntax rules of any particular language; there is no systematic standard form, although any particular writer will generally borrow style and syntax for example control structures from some conventional programming language. Popular syntax sources include Pascal,BASIC , C, Java, Lisp, andALGOL . Variable declarations are typically omitted. Function calls and blocks of code, for example code contained within a loop, is often replaced by a one-line natural language sentence.Depending on the writer, pseudocode may therefore vary widely in style, from a near-exact imitation of a real programming language at one extreme, to a description approaching formatted prose at the other.
Examples of pseudocode
An example of how pseudocode differs from regular code is below.
The pseudocode of the
Hello world program is particularly simple:output: Hello World
Mathematical style pseudocode
In
numerical computation , pseudocode often consists ofmathematical notation , typically from set and matrix theory, mixed with the control structures of a conventional programming language, and perhaps alsonatural language descriptions. This is a compact and often informal notation that can be understood by a wide range of mathematically trained people, and is frequently used as a way to describe mathematicalalgorithm s.Normally non-
ASCII typesetting is used for the mathematical equations, for example by means ofTeX orMathML markup, or proprietaryformula editor s.Mathematical style pseudocode is sometimes referred to as
pidgin code , for example "pidginALGOL " (the origin of the concept), "pidginFortran ", "pidginBASIC ", "pidgin Pascal", "pidgin C", and "pidgin Ada".Machine compilation or interpretation
It is often suggested that future programming languages will be more similar to pseudocode or
natural language than to present-day languages; the idea is that increasing computer speeds and advances in compiler technology will permit computers to create programs from descriptions of algorithms, instead of requiring the details to be implemented by a human.Natural language grammar in programming languages
Various attempts to bring elements of natural language grammar into computer programming have produced programming languages such as
HyperTalk , Lingo,AppleScript ,SQL andInform . In these languages, parentheses and other special characters are replaced by prepositions, resulting in quite talkative code. This may make it easier for a person without knowledge about the language to understand the code and perhaps also to learn the language. However, the similarity to natural language is usually more cosmetic than genuine. The syntax rules are just as strict and formal as in conventional programming, and do not necessarily make development of the programs easier.Mathematical programming languages
An alternative to using mathematical pseudocode (involving set theory notation or matrix operations) for documentation of algorithms is to use a formal mathematical programming language that is a mix of non-ASCII mathematical notation and program control structures. Then the code can be parsed and interpreted by a machine.
Several formal
specification language s include set theory notation using special characters. Examples are:
*Z notation
*Vienna Development Method Specification Language (VDM-SL).Some
array programming languages include vectorized expressions and matrix operations as non-ASCII formulas, mixed with conventional control structures. Examples are:
* A programming language (APL), and its dialectsAPLX and A+.
*MathCAD .ee also
*
Short Code
*Dummy code
*Pidgin code
*Skeleton program
*Structured English
*Concept programming External links
* [http://www.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html A pseudocode standard]
* [http://calgo.acm.org/ Collected Algorithms of the ACM]
* [http://www.cs.cornell.edu/Courses/cs482/2003su/handouts/pseudocode.pdf Pseudocode Guidelines] , PDF file.
* [http://www.coderookie.com/2006/tutorial/the-pseudocode-programming-process/ Pseudocode Programming Process] base on data from Code Complete book
Wikimedia Foundation. 2010.