- Austenite
Austenite (or gamma phase iron) is a metallic non-magnetic solid solution of
iron and analloy ing element. Inplain-carbon steel , austenite exists above the criticaleutectoid temperature of 1000 K (about 727 °C); other alloys ofsteel have different eutectoid temperatures. It is named after SirWilliam Chandler Roberts-Austen (1843-1902).Behavior in Plain-Carbon Steel
As austenite cools, it often transforms into a mixture of ferrite and
cementite as dissolved carbon falls out of solution. Depending on alloy composition and rate of cooling,pearlite may form. If the rate of cooling is very fast, the alloy may experience a slight lattice distortion known as martensitic transformation, instead of transforming into a mixture. In this industrially very important case, the carbon is not allowed to blend out in the remaining melt due to the cooling speed, but is captured inside the FCC-structure of austenite, creating tension in the crystal when the alloy cools. The result is hardmartensite . The rate of cooling determines the relative proportions of these materials and therefore the mechanical properties (e.g.hardness ,tensile strength ) of the steel.Quench ing (to induce martensitic transformation), followed bytempering will transform some of the brittle martensite intobainite . If a low-hardenability steel is quenched, a significant amount of austenite will be retained in the microstructure.tabilization
The addition of certain alloying elements, such as
manganese andnickel , can stabilize the austenitic structure, facilitating heat-treatment oflow-alloy steel s. In the extreme case of austeniticstainless steel , much higher alloy content makes this structure stable even at room temperature. On the other hand, such elements assilicon ,molybdenum , andchromium tend to de-stabilize austenite, raising the eutectoid temperature.Austenite transformation and Curie point
In many magnetic alloys, the
Curie point , the temperature at which magnetic materials cease to behave magnetically, occurs at nearly the same temperature as the austenite transformation. This behavior is attributed to theparamagnetic nature of austenite, while both martensite and ferrite are stronglyferromagnetic .Thermo-optical emission
A
blacksmith causes phase changes in the iron-carbon system in order to control the material's mechanical properties, often using the annealing, quenching, and tempering processes. In this context, the color of light emitted by the workpiece is an approximate gauge of temperature, with the transition from red to orange corresponding to the formation of austenite in medium- and high-carbon steel.Maximum carbon solubility in austenite is 2.03% C at 1420 K (1147 °C).
ee also
*
Cementite
*Eutectoid
*Ferrite (iron)
*Martensite References
* Reed-Hill, Robert, and Reza Abbaschian. "Physical Metallurgy Principles", 3rd Edition. Boston: PWS-Kent Publishing, 1991. ISBN 0534921736.
External links
* [http://www.sv.vt.edu/classes/MSE2094_NoteBook/96ClassProj/examples/kimcon.html Fe-Fe3C phase diagram]
Wikimedia Foundation. 2010.