- Photoelectric effect
The photoelectric effect is a quantum electronic phenomenon in which
electron s are emitted from matter after the absorption of energy from electromagnetic radiation such asx-rays orvisible light .cite book | title = Physics for Scientists & Engineers | author = Serway, Raymond A. | year = 1990 | pages = p. 1150 | publisher = Saunders | isbn = 0030302587 | url = http://books.google.com/books?id=RUMBw3hR7aoC&q=inauthor:serway+photoelectric&dq=inauthor:serway+photoelectric&pgis=1 Describes the photoelectric effect as the "emission of photoelectrons from matter", and describes the original usage as the "emission of photoelectrons from metallic surfaces" after the experiments of Milikan, and others.] The emitted electrons can be referred to as "photoelectrons" in this context. The effect is also termed the Hertz Effect, [ [http://books.google.com/books?vid=0K0iBwtYewSsTOZn0bYsGb4&id=BPcQAAAAIAAJ The American journal of science] . (1880). New Haven: J.D. & E.S. Dana. Page 234] [" [http://scienceworld.wolfram.com/physics/HertzEffect.html Wolfram Scienceworld] " describes the terminology of the photoelectric effect and the previous usage of the term Hertz Effect.] due to its discovery byHeinrich Rudolf Hertz , although the term has generally fallen out of use.Photoelectric effect takes place with photons with energies of about a few eV. If the photon has sufficiently high energy,
Compton scattering (~keV) orPair production (~MeV) may take place.Study of the photoelectric effect led to important steps in understanding the quantum nature of light and electrons and influenced the formation of the concept of
wave–particle duality .The term may also refer to the photoconductive effect (also known as
photoconductivity or photoresistivitity), the photovoltaic effect, or the photoelectrochemical effect.Introduction
When a
metal lic surface is exposed toelectromagnetic radiation above a certain thresholdfrequency , the light is absorbed andelectron s are emitted. In 1902,Philipp Eduard Anton von Lenard observed that theenergy of individual emitted electrons increased with the frequency, orcolour , of the light. This was at odds withJames Clerk Maxwell 's wave theory of light, which predicted that the energy would be proportional to theintensity of the radiation. In 1905,Einstein solved this paradox by describing light as composed of discrete quanta, now calledphoton s, rather than continuous waves. Based uponMax Planck 's theory ofblack-body radiation , Einstein theorized that the energy in each quantum of light was equal to the frequency multiplied by a constant, later calledPlanck's constant . A photon above a threshold frequency has the required energy to eject a single electron, creating the observed effect. This discovery led to thequantum revolution in physics and earned Einstein the Nobel Prize in 1921.Explanation
The
photon s of the light beam have a characteristic energy determined by the frequency of the light. In the photoemission process, if an electron absorbs the energy of one photon and has more energy than thework function (the electron binding energy), it is ejected from the material. If the photon energy is too low, the electron is unable to escape the surface of the material. Increasing the intensity of the light beam increases the number of photons in the light beam, and thus increases the number of electrons emitted without increasing the energy that each electron possesses. Thus the energy of the emitted electrons does not depend on the intensity of the incoming light, but only on the energy of the individual photons.Electrons can absorb energy from photons when irradiated, but they follow an "all or nothing" principle. All of the energy from one photon must be absorbed and used to liberate one electron from atomic binding, or the energy is re-emitted. If the photon energy is absorbed, some of the energy liberates the electron from the atom, and the rest contributes to the electron's
kinetic energy as a free particle.Experimental results of the photoelectric emission
# For a given metal and frequency of incident radiation, the rate at which photoelectrons are ejected is directly proportional to the intensity of the incident light.
# For a given metal, there exists a certain minimum frequency of incident radiation below which no photoelectrons can be emitted. This frequency is called the threshold frequency.
# Above the threshold frequency, the maximum kinetic energy of the emitted photoelectron is independent of the intensity of the incident light but depends on the frequency of the incident light.
# The time lag between the incidence of radiation and the emission of a photoelectron is very small, less than 10-9 second.Equations
In effect quantitatively using Einstein's method, the following equivalent equations are used:
Energy of
photon = Energy needed to remove anelectron +Kinetic energy of the emitted electronAlgebraically::where
* "h" isPlanck's constant ,
* "f" is the frequency of the incident photon,
* is thework function (sometimes denoted instead), the minimum energy required to remove a delocalised electron from the surface of any given metal,
* is the maximum kinetic energy of ejected electrons,
* "f"0 is the thresholdfrequency for the photoelectric effect to occur,
* "m" is the rest mass of the ejected electron, and
* "" is the speed of the ejected electron.Since an emitted electron cannot have negative kinetic energy, the equation implies that if the photon's energy ("hf") is less than the work function (), no electron will be emitted.
According to Einstein's special theory of relativity the relation between energy (E) and momentum (p) of a particle is , where m is the rest mass of the particle and c is the velocity of light in a vacuum.
Three-step model
The photoelectric effect in crystalline material is often decomposed into three steps: [cite book | title = Photoelectron Spectroscopy: Principles and Applications | author = Stefan Hüfner | publisher = Springer | isbn = 3540418024 | year = 2003]
# Inner photoelectric effect (see photodiode below). The hole left behind can give rise toauger effect , which is visible even when the electron does not leave the material. In molecular solidsphoton s are excited in this step and may be visible as lines in the final electron energy. The inner photoeffect has to be dipole allowed. Thetransition rule s for atoms translate via thetight-binding model onto the crystal. They are similar in geometry toplasma oscillation s in that they have to be transversal.
# Ballistic transport of half of the electrons to the surface. Some electrons are scattered.
# Electrons escape from the material at the surface.In the three-step model, an electron can take multiple paths through these three steps. All paths can interfere in the sense of the
path integral formulation .Forsurface state s andmolecule s the three-step model does still make some sense as even mostatom s have multiple electrons which can scatter the one electron leaving.History
Early observations
In 1839, Alexandre Edmond Becquerel observed the photoelectric effect via an electrode in a conductive solution exposed to light. In 1873,
Willoughby Smith found thatselenium is photoconductive.Hertz's spark gaps
In 1887,
Heinrich Hertz observed the photoelectric effect and the production and reception of electromagnetic (EM) waves. He published these observations in the journalAnnalen der Physik . His receiver consisted of a coil with aspark gap , where a spark would be seen upon detection of EM waves. He placed the apparatus in a darkened box to see the spark better. However, he noticed that the maximum spark length was reduced when in the box. A glass panel placed between the source of EM waves and the receiver absorbed ultraviolet radiation that assisted the electrons in jumping across the gap. When removed, the spark length would increase. He observed no decrease in spark length when he substituted quartz for glass, asquartz does not absorb UV radiation. Hertz concluded his months of investigation and reported the results obtained. He did not further pursue investigation of this effect, nor did he make any attempt at explaining how this phenomenon was brought about.JJ Thomson: electrons
In 1899,
J. J. Thomson investigatedultraviolet light in Crookes tubes. Influenced by the work ofJames Clerk Maxwell , Thomson deduced that cathode rays consisted of negatively charged particles, later called electrons, which he called "corpuscles". In the research, Thomson enclosed a metal plate (a cathode) in a vacuum tube, and exposed it to high frequency radiation. It was thought that the oscillating electromagnetic fields caused the atoms' field to resonate and, after reaching a certain amplitude, caused a subatomic "corpuscle" to be emitted, and current to be detected. The amount of this current varied with the intensity and color of the radiation. Larger radiation intensity or frequency would produce more current.Radiant energy
Nikola Tesla described the photoelectric effect in 1901. He described such radiation asvibration s ofaether of smallwavelength s whichion ized theatmosphere . OnNovember 5 , 1901, he received thepatent US685957 ("Apparatus for the Utilization of Radiant Energy") that describes radiation charging and discharging conductors (e.g., ametal plate or piece ofmica ) by "radiant energy ". Tesla used this effect to charge a capacitor with energy by means of a conductive plate (i.e., asolar cell precursor). The radiant energy threw off with great velocity minute particles (i.e., electrons) which were strongly electrified. The patent specified that the radiation (or radiant energy) included many different forms. These devices have been referred to as "Photoelectric alternating current stepping motors".In practice, a polished metal plate in radiant energy (e.g. sunlight) will gain a positive charge as electrons are emitted by the plate. As the plate charges positively, electrons form an electrostatic force on the plate (because of surface emissions of the photoelectrons), and "drain" any negatively charged capacitors. As the rays or radiation fall on the insulated conductor (which is connected to a
capacitor ), the condenser will indefinitely charge electrically.Von Lenard's observations
In 1902,
Philipp Eduard Anton von Lenard observed the variation in electron energy with light frequency. He used a powerful electric arc lamp which enabled him to investigate large changes in intensity, and had sufficient power to enable him to investigate the variation of potential with light frequency. His experiment directly measured potentials, not electron kinetic energy: he found the electron energy by relating it to the maximum stopping potential (voltage) in a phototube. He found that the calculated maximum electronkinetic energy is determined by the frequency of the light. For example, an increase in frequency results in an increase in the maximum kinetic energy calculated for an electron upon liberation -ultraviolet radiation would require a higher applied stopping potential to stop current in a phototube than blue light. However Lenard's results were qualitative rather than quantitative because of the difficulty in performing the experiments: the experiments needed to be done on freshly cut metal so that the pure metal was observed, but it oxidised in a matter of minutes even in the partial vacuums he used. The current emitted by the surface was determined by the light's intensity, or brightness: doubling the intensity of the light doubled the number of electrons emitted from the surface. Lenard did not know of photons.Einstein: light quanta
Albert Einstein 's mathematical description in 1905 of how the photoelectric effect was caused by absorption of quanta of light (now calledphoton s), was in the paper named "On a Heuristic Viewpoint Concerning the Production and Transformation of Light". This paper proposed the simple description of "light quanta," or photons, and showed how they explained such phenomena as the photoelectric effect. His simple explanation in terms of absorption of singlequanta of light explained the features of the phenomenon and the characteristic frequency. Einstein's explanation of the photoelectric effect won him theNobel Prize in Physics in 1921.The idea of light quanta began with
Max Planck 's published law of black-body radiation ("On the Law of Distribution of Energy in the Normal Spectrum". Annalen der Physik 4 (1901)) by assuming that Hertzian oscillators could only exist at energies "E" proportional to the frequency "f" of the oscillator by "E" = "hf", where "h" is Planck's constant. By assuming that light actually consisted of discrete energy packets, Einstein wrote an equation for the photoelectric effect that fit experiments (it explained why the energy of the photoelectrons was dependent only on the "frequency" of the incident light and not on its "intensity": a low intensity, high frequency source could supply a few high energy photons, whereas a high intensity, low frequency source would supply no photons of sufficient individual energy to dislodge any electrons). This was an enormous theoretical leap, and the reality of the light quanta was strongly resisted. The idea of light quanta contradicted the wave theory of light that followed naturally fromJames Clerk Maxwell 's equations for electromagnetic behavior and more generally, the assumption ofinfinite divisibility of energy in physical systems. Even after experiments showed that Einstein's equations for the photoelectric effect were accurate, resistance to the idea of photons continued, since it appeared to contradict Maxwell's equations, which were well understood and verified.Einstein's work predicted that the energy of individual ejected electrons increases linearly with the frequency of the light. Perhaps surprisingly, that had not yet been tested. In 1905 it was known that the energy of the photoelectrons increased with increasing "frequency" of incident light – and independent of the "intensity" of the light. However, the manner of the increase was not experimentally determined to be linear until 1915 when
Robert Andrews Millikan showed that Einstein was correct. [ [http://spiff.rit.edu/classes/phys314/lectures/photoe/photoe.html Einstein and the Photoelectric effect ] ]Effect on wave–particle question
The photoelectric effect helped propel the then-emerging concept of the dualistic nature of
light , that light exhibits characteristics of waves and particles at different times. The effect was impossible to understand in terms of the classicalwave description of light, as the energy of the emitted electrons did not depend on the intensity of the incident radiation. Classical theory predicted that the electrons could 'gather up' energy over a period of time, and then be emitted. For such a classical theory to work a pre-loaded state would need to persist in matter. The idea of the pre-loaded state was discussed in Millikan's book "Electrons (+ & –)" and in Compton and Allison's book "X-Rays in Theory and Experiment".Uses and effects
Photodiodes and phototransistors
Solar cell s (used in solar power) and light-sensitive diodes use a variant of the photoelectric effect, but not ejecting electrons out of the material. Insemiconductor s, light of even relatively low energy, such as visible photons, can kick electrons out of thevalence band and into the higher-energyconduction band , where they can be harnessed, creatingelectric current at a voltage related to thebandgap energy.Image sensors
Video camera tube s in the early days oftelevision used the photoelectric effect; newer variants used photoconductive rather than photoemissive materials.Silicon
image sensor s, such ascharge-coupled device s, widely used for photographic imaging, are based on a variant of the photoelectric effect, in which photons knock electrons out of the valence band of energy states in asemiconductor , but not out of the solid itself.The gold-leaf electroscope
. Charge placed on the metal cap spreads to the stem and the gold leaf of the electroscope. Because they then have the same charge, the stem and leaf repel each other. This will cause the leaf to bend away from the stem.The electroscope is an important tool in illustrating the photoelectric effect. Let us say that the scope is negatively charged throughout. There is an excess of electrons and the leaf is separated from the stem. But if we then shine high-frequency light onto the cap, the scope discharges and the leaf will fall limp.This is because the frequency of the light shining on the cap is above the cap's threshold frequency. The photons in the light have enough energy to liberate electrons from the cap, reducing its negative charge. This will discharge a negatively charged electroscope and further charge a positive electroscope.
However, if the EM radiation hitting the metal cap does not have a high enough frequency, (its frequency is below the threshold value for the cap) then the leaf will never discharge, no matter how long one shines the low-frequency light at the cap.
Photoelectron spectroscopy
Since the energy of the photoelectrons emitted is exactly the energy of the incident photon minus the material's work function or binding energy, the work function of a sample can be determined by bombarding it with a
monochromatic X-ray source orUV source (typically ahelium discharge lamp), and measuring the kinetic energy distribution of the electrons emitted.Photoelectron spectroscopy is done in a high vacuum environment, since the electrons would be scattered by air.A typical electron energy analyzer is a concentric hemispherical analyser (CHA), which uses an electric field to divert electrons different amounts depending on their kinetic energies. For every element and core (atomic orbital) there will be a different binding energy. The many electrons created from each will then show up as spikes in the analyzer, and can be used to determine the elemental composition of the sample.
pacecraft
The photoelectric effect will cause
spacecraft exposed to sunlight to develop a positive charge. This can get up to the tens ofvolt s . This can be a major problem, as other parts of the spacecraft in shadow develop a negative charge (up to several kilovolts) from nearby plasma, and the imbalance can discharge through delicate electrical components. The static charge created by the photoelectric effect is self-limiting, though, because a more highly-charged object gives up its electrons less easily. [ [http://www.eas.asu.edu/~holbert/eee460/spc-chrg.html Spacecraft charging] ]Moon dust
Light from the sun hitting lunar dust causes it to become charged through the photoelectric effect. The charged dust then repels itself and lifts off the surface of the
Moon byelectrostatic levitation . This manifests itself almost like an "atmosphere of dust", visible as a thin haze and blurring of distant features, and visible as a dim glow after the sun has set. This was first photographed by theSurveyor program probes in the 1960s. It is thought that the smallest particles are repelled up to kilometers high, and that the particles move in "fountains" as they charge and discharge. [- [http://www.firstscience.com/site/articles/moonfountains.asp Moon fountains] ] [- [http://www.spacer.com/news/dust-00a.html Dust gets a charge in a vacuum] ]Night vision devices
Photons hitting a gallium arsenide plate in
night vision device s cause the ejection of photoelectrons due to the photoelectric effect. These are then amplified into a cascade of electrons that light up aphosphor screen.References
Notes
Book references
Serway, R. A. (1990). "Physics for engineers and scientists", 3rd ed. Saunders Publishing
ee also
" Electronics :"
*Photocurrent
*Photomultiplier
*Solar cell
* Solar power
*Transducer "
Physics :"
*Atom
*Corona discharge
*Double-slit experiment
*Electron
*Gamma ray
*Nobel Prize in Physics
*Optical phenomenon
*Photoelectron spectroscopy
*Photon
*Photon dynamics in the double-slit experiment
*Photon polarization
*Planck's law of black body radiation
*Quantum mechanics
*Radiant energy
*Wave-particle duality "People":
*Aleksandr Grigorievich Stoletov
*Albert Einstein
*Heinrich Hertz
*Ernest Lawrence
*Robert Millikan
*Max Planck
*J. J. Thomson "Lists":
*
List of electronics topics
*List of optical topics
*List of physics topics
*Timeline of solar cells
* Scientific method list
* Timeline of mechanics and physicsExternal links
* Nave, R., " [http://hyperphysics.phy-astr.gsu.edu/hbase/mod1.html Wave-Particle Duality] ". HyperPhysics.
* " [http://www.colorado.edu/physics/2000/quantumzone/photoelectric.html Photoelectric effect] ". Physics 2000. University of Colorado, Boulder, Colorado.
* ACEPT W3 Group, " [http://acept.la.asu.edu/PiN/rdg/photoelectric/photoelectric.shtml The Photoelectric Effect] ". Department of Physics and Astronomy, Arizona State University, Tempe, AZ.
* Haberkern, Thomas, and N Deepak " [http://www.faqs.org/docs/qp/ Grains of Mystique: Quantum Physics for the Layman] ". [http://www.faqs.org/docs/qp/chap03.html Einstein Demystifies Photoelectric Effect] , Chapter 3.
* Department of Physics, " [http://www.phy.davidson.edu/ModernPhysicsLabs/hovere.html The Photoelectric effect] ". Physics 320 Laboratory, Davidson College, Davidson.
* Fowler, Michael, " [http://www.phys.virginia.edu/classes/252/photoelectric_effect.html The Photoelectric Effect] ". Physics 252, University of Virginia."
Applet s"
* Curull, Xavi Espinal, " [http://www.ifae.es/xec/phot2.html Photoelectric effect Applet] ". (Java)
* Fendt, Walter, and Taha Mzoughi, " [http://www.walter-fendt.de/ph14e/photoeffect.htm The Photoelectric Effect] ". (Java)
* " [http://lectureonline.cl.msu.edu/~mmp/kap28/PhotoEffect/photo.htm Applet: Photo Effect] ". Open Source Distributed Learning Content Management and Assessment System. (Java)
* " [http://phet.colorado.edu/new/simulations/sims.php?sim=Photoelectric_Effect Photoelectric Effect] ". The Physics Education Technology (PhET) project. (Java)
Wikimedia Foundation. 2010.